
I. Static Optimal Taxation

How should government set taxes?

Suppose that the government needs to raise a given
amount of revenue to finance public programs and that
it cares about social welfare.

The Second Welfare Theorem tells us that any Pareto
efficient allocation can be achieved through lump-sum
taxation.

Thus, raising revenues with lump sum taxes seems like
a good idea.

However, lump sum taxes are a bit impractical.

This is because the government will not typically want
everyone to pay exactly the same tax.



For example, under most notions of social welfare, those
citizens with greater income generating ability should
pay more.

But observing things like the ability to generate income
is difficult.

In reality, therefore, taxes are a function of observables
like earnings, value of property, consumption of goods.

But such taxes influence the economic decisions of cit-
izens, which leads to distortions.

The question is then how best to raise revenue given
these distortions.

This is a non-trivial problem and leads to the literature
on optimal taxation.

The literature on static optimal taxation can be divided
into three parts:



(i) optimal commodity taxation - this deals with the
optimal linear taxation of the consumption of goods
and services;

(ii) optimal income taxation - this deals with the opti-
mal non-linear taxation of income;

(iii) optimal mixed taxation - this combines linear taxes
on consumption goods with non-linear income taxation.



Optimal Commodity Taxation

The optimal commodity taxation literature tries to shed
light on how tax rates should differ across different
goods and services.

Before getting into the details, it is worthwhile review-
ing what insights partial equilibrium analysis provides.

A standard partial equilibrium analysis of the problem
would suggest that the deadweight loss from taxation
will be lowest on goods which are supplied or demanded
inelastically.

However, this analysis ignores equity concerns and in-
teractions between commodities.

To capture these things we need to set up a more so-
phisticated model.



We will set up the simplest version of such a model and
derive a version of the Many Person Ramsey Tax Rule -
which is a formula that characterizes the optimal taxes.

We will then explain the Production Efficiency Theorem
which is the second major result of optimal commodity
taxation.

1. Many Person Ramsey Tax Rules

Model

The model is a general equilibrium model with a very
simple linear production technology.

There are I consumers, indexed by i = 1, ..., I

There are n consumer goods, indexed by j = 1, ..., n



Denote labor by l

Consumer i’s utility function is ui(x
i, li), where xi =

(xi1, ..., x
i
n)

Each good j is produced from labor with a linear tech-
nology, xj = lj

Assume competitive production so that the producer
price of good j is pj = w, where w is the wage rate.

Without loss of generality, let w = 1, which means that
pj = 1 for all j.

The government needs to hire T units of labor. Thus
it needs T units of tax revenue (T is exogenous).

To raise the revenue, the government imposes linear
taxes on goods j = 1, ..., n. These are (t1, ..., tn).

The taxes raise consumer prices to (1 + t1, ..., 1 + tn).



Note: There is no loss of generality in not considering
a linear tax on labor income. A tax on labor income is
equivalent to a uniform tax on all commodities.

Let q = (1 + t1, ..., 1 + tn) denote the post-tax price
vector.

Consumer i’s problem given the price vector q and the
wage w is

max
(xi,li)

{ui(xi, li) : q · xi ≤ wli +Ri}

whereRi denotes consumer i’s non-labor income (which
will be zero in the model).

Consumer i’s indirect utility function is denoted
Vi(q, w,R

i) and his demand function is denoted
xi(q, w,Ri).

Since w = 1 and Ri = 0, we will just write Vi(q) and
xi(q) in what follows.



The government’s objective is to maximize the social
welfare function W (V1(q), ..., VI(q)) where ∂W/∂Vi >
0 for all i

The government’s problem is:

max
q
W (V1(q), ..., VI(q)),

s.t.
I∑
i

n∑
j

(qj − 1)xij(q) = T.

The Lagrangian for the problem is

L = W + λ[

I∑
i

n∑
j

(qj − 1)xij(q)− T ]

The first order conditions are



I∑
i

∂W

∂Vi

∂Vi
∂qk

= −λ
I∑
i

(xik+
n∑
j

tj
∂xij
∂qk

) for k = 1, ..., n

By Roy’s Identity,

∂Vi
∂qk

= −αixik

where αi is the marginal utility of income of consumer
i; that is,

αi =
∂Vi
∂Ri

Let

βi =
∂W

∂Vi
αi

this is interpreted as the “social marginal utility of in-
come” of consumer i.

Using these definitions:



I∑
i

βix
i
k = λ

I∑
i

(xik +
n∑
j

tj
∂xij
∂qk

) for k = 1, ..., n

Recall the Slutsky equation:

∂xij
∂qk

= sijk − xik
∂xij
∂Ri

where sijk =
∂xij
∂qk
|u=ui (the derivative of the Hicksian or

compensated demand function).

We can now write:

n∑
j=1

tj

I∑
i=1

sijk =

∑
i

βix
i
k

λ
−

I∑
i

xik +

I∑
i

xik

n∑
j

tj
∂xij
∂Ri

Define



bi =
βi
λ

+
n∑
j

tj
∂xij
∂Ri

=
SMU of i’s income

marginal value of revenue
+Tax revenue consequences

= Net SMU of i’s income

Let xk =
I∑
i

xik be the aggregate demand for good k.

Using the symmetry of the Slutsky matrix, we get

n∑
j

tj

I∑
i

sikj = −xk(1−
I∑
i

bi
xik
xk

)

Now denote
b = (

∑
i

bi)/I



and let

θk =
∑
i

(
bi

b
− 1)(

Ixik
xk
− 1)/I

= cov(
bi

b
,
Ixik
xk

)

Dividing through the first order condition by xk we have
that

−
∑n

j=1 tj
∑I

i=1 s
i
kj

xk
= 1−

I∑
i=1

bi
xik
xk

Now note that

I∑
i=1

bi
xik
xk

=
1

xk

I∑
i=1

bix
i
k

=
I

xk

([
1

I

I∑
i=1

bix
i
k − b

xk
I

]
+ b

xk
I

)



=
I

xk

(
cov

(
bi, x

i
k

)
+ b

xk
I

)
= (

I

xk
)(
bxk
I

)

(
cov

(
bi

b
,
Ixik
xk

)
+ 1

)
= b

(
cov

(
bi

b
,
Ixik
xk

)
+ 1

)

For the third step, note that in general

cov (xi, zi) = E(xizi)− E(xi)E(zi).

Then we get

−

∑
j

tj
∑
i

sikj

xk
= 1− b− bθk

which tells us

Discouragement index of good k

= Distributive factor of good k



This condition is the Many Person Ramsey Tax Rule
and was first derived by Diamond in a 1975 paper in
Journal of Public Economics.

The discouragement index of good k is to be interpreted
as the relative reduction in compensated demand for
good k resulting from the tax system.

When all goods have the same θk, then the tax rule
says that the discouragement index should be constant
across goods.

When goods have different θk’s, then goods with high
θk should be discouraged the least.

The formula is insightful because it separates out dis-
tributional and efficiency effects.



The Case of Identical Consumers

Assume that all consumers are identical in the sense
that they have a common utility function u(x, l) and
identical endowments of labor.

In this case, bi = b for all i. This means that θk = 0
for all k and hence that

−

∑
j

tj
∑
i

sikj

xk
= 1− b

Thus, in an optimal system, the discouragement index
should be constant across goods.

This formula is known as the Ramsey Rule because it
was first derived by Frank Ramsey in 1927. Ramsey
was the first to pose and solve the optimal commodity
taxation problem.



Two goods

Now consider the two good case n = 2. Then, it can
be shown that

t1 − t2 = −1− b
D

x1x2[ε1l − ε2l]

where D is the determinant of the Slutsky sub-matrix
for the two goods

D = s11s22 − s2
12 > 0

and εil is the compensated elasticity of demand for
good i with respect to a change in the wage rate; that
is

εil = sil/xi

=
w ∂xi

∂w

∣∣∣
u

xi
.

We conclude that if the cross elasticities are the same,
then the taxes are the same.



On the other hand, if ε1l < ε2l, then t1 > t2 (since
1 > b).

If ε1l < ε2l then a wage increase leads to a greater
increase in the compensated demand for good 2 than
good 1.

Thus, good 1 must be taxed at a higher rate than good
2 if when the consumer works more he increases his
consumption of good 2 more than good 1.

This result was obtained by Corlett and Hague (1953
REStud).

The interpretation is that when preferences are not
seperable between consumption goods and leisure, the
government should deviate from uniform taxation by
taxing more heavily goods that are complementary with
leisure (skis) than the goods that are complementary to
labor (child care).



Uniform taxation

More generally, Deaton (1981 Econometrica) presents
conditions for uniform taxation to be optimal - the re-
quirement is that all goods are quasi-separable from
leisure.

This is a complex condition - see Deaton’s paper for
definition.

It turns out that a utility function is quasi-separable if
and only if its expenditure function can be written as

e(u, q, w) = e∗(u, b(u, q), w)

for some real valued function b(u, q).

This is a stringent condition which is not likely to be
satisfied in reality.

Thus, the bottom line is that uniform taxation of com-
modities is highly unlikely to be optimal which is an
important finding in its own right.



Inverse Elasticity Rule

A really clean result emerges only when there are no
cross-price effects (sikj = 0 for all k 6= j).

Then

tk
1 + tk

=
1− b
εk

where εk = −skkqk/xk.

To see this, note that

−

∑
j

tj
∑
i

sikj

xk
= − tkskk

x̃k

where x̃k is the individual demand for good k.

Thus, recalling that qk = 1 + tk, we have that

− tkqkskk
x̃k(1 + tk)

= 1− b



which implies the result.

This condition is called Inverse Elasticity Rule. It im-
plies tax rates should be inversely proportional to de-
mand elasticities.

This is because, as our partial equilibrium suggested,
when demand for a good is elastic, the deadweight loss
from taxing the good is greater, so better not to tax on
this good.

This condition is satisfied, for example, when

u(x, l) =
∑
j

ϕj(xj)− l.



2. Production Efficiency Theorem

Diamond and Mirrlees (1971) consider the optimal com-
modity tax problem for a more general production tech-
nology.

They showed that if production exhibits constant re-
turns to scale or production exhibits decreasing returns
to scale and profits are taxed at 100%, then the opti-
mal tax system always maintains the economy on the
boundary of its production possibilities frontier.

This is known as the Production Efficiency Theorem.

They also provided optimal tax formulas for this more
general environment, which look very similar to those
we just derived.



The Production Efficiency Theorem means that the
marginal rate of technical substitution between any two
given inputs is the same in all productive units that use
them.

This means that the use of non-uniform taxes on pro-
ductive factors is non-optimal.

It also implies that intermediate goods (e.g., steel) should
not be taxed.

This result was regarded as very surprising at the time,
since the prior literature on the Theory of the Second
Best had suggested that anything might be optimal if
the first best was not achievable (see Lipsey and Lan-
caster 1956).



Model

To understand the result, consider an economy with I
consumers, indexed by i = 1, ..., I

There are n commodities, indexed by k = 1, ..., n

Let ωi denote consumer i’s endowment of the com-
modities.

Let zi denote consumer i’s consumption vector and let
xi = zi − ωi denote his net consumption vector.

Let ui(z
i) denote consumer i’s utility function and let

q denote the vector of consumer prices.

There are J firms indexed by j = 1, ..., J

Firm j’s production possibility set is Yj and assume it
is convex.



Let Y =
∑

j Yj be the aggregate production possibility
set.

Let p denote the vector of producer prices. The vector
of commodity taxes is given by t = q − p

Let the government’s requirements of the n commodi-
ties be denoted by the vector g

Since there are either no profits or government taxes all
the profits away, consumer i’s problem is

max
zi

ui(z
i) s.t. qzi ≤ qωi

This is equivalent to

max
xi

ui(x
i + ωi) s.t. qxi ≤ 0

Let xi(q) denote the solution to this problem (i.e., the
consumer’s demand function) and assume that it is
well-defined and continuous.



Let vi(q) denote consumer i’s indirect utility; i.e.,

vi(q) = ui(x
i(q) + ωi)

Let the government’s social welfare function be

W (v1(q), ..., vI(q))

and assume that ∂W/∂vi > 0 for all i.



Analysis

To understand the result, suppose first that the gov-
ernment can choose both the consumer price vector q
and all the firms’ production vectors (yj)

J
j=1

Then the government’s problem is

max{q,(yj)Jj=1}
W (v1(q), ..., vI(q))

s.t.
∑

i x
i(q) + g ≤

∑
j yj

Proposition If {q∗, (y∗j )Jj=1} solves this problem, then

y∗ =
∑
j

y∗j ∈ bdyY.

Sketch of Proof: Suppose to the contrary that y∗ ∈
intY. Choose a consumption good k for which all con-
sumers have a positive net demand (e.g., ice cream).
Then, for all consumers i = 1, ..., I

∂vi(q
∗)/∂qk < 0



Since ∑
i

xi(q∗) + g ∈ intY

the planner can reduce qk slightly below q∗k and∑
i

xi(q∗−k, qk) + g

will remain in the interior of Y . Accordingly, the plan-
ner can choose the price vector (q∗−k, qk) and produc-

tion vectors (yj)
J
j=1 such that∑

i

xi(q∗−k, qk) + g =
∑
j

yj

and make each consumer better off - a contradiction.
�

We now want to generalize this to the case in which
the government simply levies a vector of commodity
taxes t (which are paid by consumers), taxes any profits
at 100% and uses these revenues to purchase g from
producers.



It turns out that the government can achieve the same
utility allocation for consumers as it could in the earlier
problem, which implies that the aggregate production
vector must be on the boundary of the production pos-
sibility frontier.

To understand this, let {q∗, (y∗j )Jj=1} be the solution to
the earlier problem.

Since y∗ =
∑

j y
∗
j ∈ bdyY there must exist some pro-

ducer price vector p∗ such that

y∗ ∈ arg max
y∈Y

p∗ · y

or, equivalently, for all firms j

y∗j ∈ arg max
yj∈Yj

p∗ · yj

Moreover, since

q∗ ·
∑
i

xi(q∗) = 0



and ∑
i

xi(q∗) + g =
∑
j

y∗j ,

we have that

0 = q∗ ·
∑
i

xi(q∗)

= q∗ ·
∑
i

xi(q∗)− p∗ ·
∑
j

y∗j + p∗ ·
∑
j

y∗j

= (q∗ − p∗) ·
∑
i

xi(q∗)− p∗ · g + p∗ ·
∑
j

y∗j

which implies that

p∗ · g = (q∗ − p∗) ·
∑
i

xi(q∗) + p∗ ·
∑
j

y∗j .

Thus, if the government were to announce the tax vec-
tor t∗ = q∗ − p∗, tax profits at 100% and purchase the
vector g from producers with the tax revenues, then
there would exist a competitive equilibrium with con-
sumer and producer prices q∗ and p∗ in which consumer
i consumes xi(q∗), firm j produces y∗j and the govern-
ment’s budget is balanced!



Thus, t∗ is the optimal tax vector and the resulting
aggregate production bundle is on the boundary of Y
which implies production efficiency.

Moreover, the optimal tax vector satisfies Ramsey Rule
like formulas.

Notice that the Production Efficiency Theorem does
not necessarily hold when there are decreasing returns
and the government cannot tax profits at 100%.

Nor does it necessarily hold when there are increasing
returns.



Implications

The Production Efficiency Theorem implies that Inter-
mediate Goods should not be taxed.

Intermediate goods are goods that are neither direct
inputs nor outputs for individual consumption.

Consider an economy with two goods x and y and labor
l.

Good y is produced from labor with the technology
y = ly where ly is the labor used in y production.

Good x is produced from labor and good y with the
CRS technology x = f(y, lx).

Consumer i has utility function ui(x
i, li) implying that

good y is an intermediate good.



Let w = 1, so that py = 1 and suppose the government
levies taxes tx > 0 and ty > 0.

Then firms in the x industry solve

max pxf(y, lx)− lx − (1 + ty)y

This means that

px
∂f(y, lx)

∂y
= (1 + ty)

and

px
∂f(y, lx)

∂lx
= 1

Aggregate production will be inefficient - we can reduce
lx by ∆l and increase ly and y by ∆l, leading to a
change in output of

∆x =

(
∂f

∂y
− ∂f

∂lx

)
∆l > 0.

Thus, the Production Efficiency Theorem implies that
it must be the case in an optimal system that ty = 0.



The Production Efficiency Theorem also implies that
non-uniform taxes on productive factors are not opti-
mal.

By productive factors, I mean inputs that consumers
are endowed with but do not consume directly (e.g.,
natural resources).

Consider an economy with two consumption goods x1

and x2 and two factors z1 and z2.

Consumers are endowed with the two factors but ob-
tain utility only from the consumption goods so that
ui(x

i
1, x

i
2).

Let the aggregate endowments of z1 and z2 be z1 and
z2.

Good xi is produced from the two factors with the CRS
technology xi = fi(z

i
1, z

i
2).



Let pz1 = 1 and suppose the government levies taxes
tx1 and tx2 .

Moreover, suppose the government levies a tax t1z2 on
the use of z2 in industry 1 but not industry 2.

Then firms in the x1 industry solve

max px1f1(z1
1 , z

1
2)− z1

1 − (pz2 + t1z2)z1
2

and firms in the x2 industry solve

max px2f2(z2
1 , z

2
2)− z2

1 − pz2z2
2

This means that

∂f1(z1
1 , z

1
2)/∂z1

1

∂f1(z1
1 , z

1
2)/∂z1

2

6= ∂f2(z2
1 , z

2
2)/∂z2

1

∂f2(z2
1 , z

2
2)/∂z2

2

Aggregate production will be inefficient - we can rear-
range inputs between the industries and increase both
x1 and x2.



Thus, by the Production Efficiency Theorem, in an op-
timal system t1z2 = 0.

Notice, however, that if the government levies a tax tz2
on the use of z2 in both industry 1 and industry 2, this
would not create a production inefficiency.



Optimal Income Taxation

As noted last lecture, the main difference between com-
modity (or indirect) taxation and income (or direct)
taxation, is that the government can use non-linear tax
schedules when taxing income.

Designing optimal non-linear tax schedules is obviously
more complicated than designing linear tax schedules.

Mirrlees (1971) proposed a simple framework for think-
ing about the problem of optimal non-linear taxation.

The key insight is to assume that the government can
observe citizens’ incomes but not their income gener-
ating abilities.

The problem of optimal taxation can then be modeled
as a mechanism design problem in which citizens an-
nounce their abilities to the government and receive a
consumption-income bundle in exchange.



This schedule of consumption-income bundles implicitly
defines the optimal non-linear income tax schedule.

The Mirrlees Model

There are a continuum of individuals.

There are two goods - consumption and leisure.

Individuals get utility from consumption x and work
l according to the utility function x − ϕ(l) where ϕ
is increasing, strictly convex, and twice continuously
differentiable.

Individuals are endowed with l units of time in each
period. Assume that ϕ′(0) = 0 and that liml→l ϕ

′(l) =
∞.

Individuals differ in their income generating abilities.



An individual with income generating ability a earns
income y = al if he works an amount l.

There are a continuum of ability levels [a, a].

Let F (a) denote the fraction of individuals with ability
less than or equal to a.

The economy also has a government. This government
spends an amount G. While this spending does not di-
rectly impact individuals’ utilities, the government must
raise the revenue necessary to finance it.



The First Best

An allocation in this economy is described by {x(a), y(a)}.

To be feasible an allocation must satisfy the aggregate
resource constraint∫

x(a)dF (a) +G ≤
∫
y(a)dF (a).

The utility of an individual with ability a under such an
allocation is

U(a) = x(a)− ϕ(y(a)/a).

Assume that government seeks to maximize the social
welfare function

W =

∫
Ψ(U(a))dF (a)

where Ψ(·) is increasing and concave.



The first best problem is

max{x(·),y(·)}
∫

Ψ(U(a))dF (a)

s.t.
∫
x(a)dF (a) +G ≤

∫
y(a)dF (a). (R)

The Lagrangian for this problem can be written as:

L =

∫
[Ψ(U(a)) + µ(y(a)− x(a))]dF (a)− µG

Maximizing this “pointwise” with respect to (x(a), y(a))
yields the first order conditions

Ψ′(U(a)) = µ

and

Ψ′(U(a))
ϕ′(y(a)/a)

a
= µ.

Thus, for all a
a = ϕ′(y(a)/a)



and for all a and a′

U(a) = U(a′).

The first condition says that individuals must work up
until the point at which their marginal disutility of work
equals their marginal product.

This means that higher ability types should work more.

The second condition says that all individuals should
have the same utility level.



First Best Taxes

If the government can observe individuals’ abilities, it
can implement the first best allocation with a very sim-
ple tax system.

Individuals of ability a are required to pay a tax T (a)
and individuals of ability a < a are required to pay a
tax T (a) such that

y(a)− T (a)− ϕ(y(a)/a) = y(a)− T (a)− ϕ(y(a)/a).

where y(a) is the first best earnings level.

This implies that for all a

T (a) = T (a)−[y(a)− ϕ(y(a)/a)− (y(a)− ϕ(y(a)/a))]

Observe that i) all individuals have the same utility level
and ii) lower ability individuals pay lower taxes.



The tax T (a) is set to satisfy the government’s budget
constraint; i.e.,∫ (

T (a)−
[

y(a)− ϕ(y(a)/a)
− (y(a)− ϕ(y(a)/a))

])
dF (a) = G

Given this system, individuals of ability a will solve

max{y − T (a)− ϕ(y/a) : y/a ∈ [0, l]}

Clearly, individuals of ability a will choose to earn y(a)
- the first best earnings level.



The Second Best

The first best allocation will not be implementable when
the government is unable to observe individuals’ income
generating abilities and hence unable to impose ability-
specific lump sum taxes.

Suppose for example that the government announced
that all those who earned y(a) would pay tax T (a).

Then, since for all a > a,

y(a)− T (a)− ϕ(y(a)/a) < y(a)− T (a)− ϕ(y(a)/a),

all inividuals would choose to earn y(a) and the gov-
ernment’s budget would not balance.

To account for this problem, we need to ensure that it
is always in individuals’ interests to claim the bundles
intended for them.

Formally, we require that the allocation satisfy the fol-
lowing set of incentive constraints: for all a



x(a)− ϕ(y(a)/a) ≥ x(a′)− ϕ(y(a′)/a) for all a′

The second best problem is

max{x(·),y(·)}
∫

Ψ(U(a))dF (a)

s.t.
∫
x(a)dF (a) +G ≤

∫
y(a)dF (a) (R)

∀a x(a)− ϕ(y(a)/a) ≥ x(a′)− ϕ(y(a′)/a) ∀a′

The strict mechanism design interpretation is that the
government asks people to report their abilities with
the understanding that those reporting ability a get the
bundle (x(a), y(a)).

Obviously, this is not the way the tax system works - the
way it works is that people choose how much income
to earn y and then pay taxes T (y).

But the solution to the mechanism design problem im-
plicitly defines an income tax system in the sense that
individuals who earn y(a) pay taxes T (y(a)) = y(a)−
x(a).



Sketch of Solution Procedure

The key to solving the second best problem is to sim-
plify the incentive constraints.

Define the function

v(a′; a) = x(a′)− ϕ(y(a′)/a).

The interpretation is that this is type a’s utility when
he claims to be type a′.

Assuming that the allocation is differentiable, incentive
compatibility implies that

∂v(a; a)

∂a′
= 0

and
∂2v(a; a)

∂a′2
≤ 0.



Differentiating the first order condition, we get

∂2v(a; a)

∂a′2
+
∂2v(a; a)

∂a′∂a
= 0.

Thus, the second order condition is equivalent to

∂2v(a; a)

∂a′∂a
≥ 0.

Now we have that

∂v(a′; a)

∂a′
= x′(a′)− ϕ′(y(a′)

a
)
y′(a′)

a

and

∂2v(a; a)

∂a′∂a
= y′(a)[

ϕ′(y(a)/a)

a2
+
ϕ′′(y(a)/a)y(a)

a3
].

Since the term in the square brackets is positive, the
second order condition is satisfied if and only if y′(a) ≥
0.



We conclude that necessary conditions for the alloca-
tion {x(·), y(·)} to satisfy the incentive compatability
constraints are that

y′(a) ≥ 0

and

x′(a)− ϕ′(y(a)

a
)
y′(a)

a
= 0

It can also be shown that these are sufficient condi-
tions (see, for example, Laffont (1989) Economics of
Uncertainty and Information)

Thus, we can recast the problem as

max{x(·),y(·)}
∫

Ψ(U(a))dF (a)

s.t.
∫
x(a)dF (a) +G ≤

∫
y(a)dF (a). (R)

∀a x′(a)− ϕ′(y(a)/a)y
′(a)
a = 0 & y′(a) ≥ 0

To further simplify, note that

x(a) = U(a) + ϕ(
y(a)

a
)



and using the first order condition, we get

U ′(a) = x′(a)− ϕ′(y(a)

a
)[
y′(a)a− y(a)

a2
]

= ϕ′(
y(a)

a
)
y(a)

a2
.

Thus, the problem can be restated as

max{x(·),y(·)}
∫

Ψ(U(a))dF (a)

s.t.
∫

[y(a)− U(a)− ϕ(y(a)
a )]dF (a) ≥ G (R)

∀a U ′(a) = ϕ′(y(a)
a )y(a)

a2
& y′(a) ≥ 0.

This is a problem that can be solved via the techniques
of optimal control theory - U(a) is the state variable
and y(a) is the control variable.

Typically, the constraint that y′(a) ≥ 0 is ignored ini-
tially and then conditions are found that guarantee that
it is satisfied.



Let us now explain how to solve this optimal control
problem. We will follow Diamond (1988) AER.

A textbook on how to solve optimal control problems
is Dynamic Optimization by Kamien and Schwartz.

It is actually easier to let l (a) =
y (a)

a
be the control

variable, rather than y (a).

With U (a) being the state variable and l (a) the control
variable, the Hamiltonian for the problem is

H = {Ψ (U (a))− λ [U (a) + ϕ (l (a))− a · l (a)]} f (a)

+ µ (a)

[
ϕ′ (l (a))

l (a)

a

]
.

The first-order conditions are given by

µ′ (a) = − ∂H
∂U (a)



and
∂H
∂l (a)

= 0.

The first condition implies that

µ′ (a) = −
{

Ψ′ (U (a))− λ
}
f (a) , (1)

and the second implies that

λ
[
ϕ′ (l (a))− a

]
f (a)

=
1

a
µ (a)

[
ϕ′′ (l (a)) l (a) + ϕ′ (l (a))

]
.

Rewrite this as

λ

[
ϕ′ (l (a))

a
− 1

]
af (a)

=
ϕ′ (l (a))

a

[(
ϕ′′ (l (a)) l (a)

ϕ′ (l (a))
+ 1

)]
µ (a) . (2)

Setting µ (a) equal to zero we can integrate µ′ (a) in
(1) to get

µ (a) =

∫ a

a

{
Ψ′ (U (a))− λ

}
f (a) da.



Note also that for any individual of type a, we have
that

1− T ′(y(a)) =
ϕ′(l(a))

a
.

Also let

ε(a) =
a2(1− T ′(y(a)))

al(a)ϕ′′(l(a))

This is the elasticity of labor supply of an individual of
type a; that is,

ε(a) =
w

l

dl

dw

where w is the net marginal wage which equals a(1 −
T ′(y(a))).

Using these, we can rewrite (2) as

−λT ′ (a) af (a) =
(
1− T ′ (a)

) [ 1

ε (a)
+ 1

]
×
∫ a

a

{
Ψ′ (U (a))− λ

}
f (a) da



or

T ′ (a)

1− T ′ (a)
=

[
1

ε (a)
+ 1

]
1− F (a)

af (a)

1

1− F (a)

× 1

λ

∫ a

a

{
λ−Ψ′ (U (a))

}
f (a) da.

Diamond argues (in the paragraph preceding Eqn 11
in his paper) that with quasi-linear preferences the La-
grange multiplier on the government budget constraint
equals the average SMU,

λ =

∫ a

a
Ψ′ (U (a)) f (a) da.

Let

D(a) =
1

1− F (a)

∫ a

a
Ψ′(U(α))f(α)dα

D(a) is the average value of Ψ′(U(α)) on the interval
[a, a]. Note that it is decreasing in a.



Then the previous equation can be rewritten as

T ′(y(a))

1− T ′(y(a))
= [1 +

1

ε(a)
][

1− F (a)

af(a)
][1− D(a)

D(a)
].

This is not a closed form solution for the optimal marginal
tax rates.

Note that D(a) depends upon the optimal utility levels
which are endogenous.

Nonetheless, the formula is useful and can be under-
stood intuitively.



To understand the condition intuitively, consider the
following perturbation:

Raise the marginal tax rate for individuals with income
y(a) (say, in a small interval y(a) to y(a) + δ where
δ is infinitessimal) leaving all other marginal tax rates
unchanged.

To see the effects, note first that for any individual of
type a′, we have that

1− T ′(y(a′)) =
ϕ′(y(a′)/a′)

a′

and hence the labor supply distortion of a type a′ just
depends upon the marginal tax rate at his income level
y(a′). The higher the marginal tax rate, the higher the
distortion.

There are two effects of the perturbation. First, indi-
viduals with income levels in the treated interval will
have their labor supply further distorted.



Second, since

T (y) = T (y(a)) +

∫ y

y(a)
T ′(z)dz,

individuals with income levels above y(a) + δ will pay
higher taxes, but they will face no additional distortion
because their marginal tax rates are the same.

The first effect is a cost and the second effect is a bene-
fit because the social welfare function values redistribu-
tion and because individuals with income levels above
are y(a) + δ an above average slice of the population.

Roughly speaking, the higher is the benefit from the
second effect relative to the cost of the first effect, the
higher should be the marginal tax rate at y(a).

The formula for the optimal marginal tax rates reflects
this logic.



The higher the ratio (1 − F (a))/af(a) the higher is
benefit relative to cost because the distorted group is
smaller relative to the group who pays more taxes.

The smaller the labor supply elasticity the lower is the
cost, because the lower is the distortion.

The higher is 1− D(a)
D(a) , the higher is the benefit because

the average value of Ψ′(U(α)) on the interval [a, a] is
lower.

What does the first order condition imply?

(i) Since the RHS is non-negative, T ′(y(a)) ∈ [0, 1)

(ii) T ′(y(a)) = 0 and T ′(y(a)) = 0

The latter results assume that there are some upper and
lower bounds to the ability distribution, as opposed to
the support just being [0,∞)



If some individual have zero ability (which seems plau-
sible), they will not work and the zero marginal tax rate
result does not hold.

The “no distortion at the top” result is a local result
and does not imply that marginal rates near the top of
the income distribution should be zero or near zero.

To get any further one has to simulate.



Simulations

There is a long tradition of simulating the optimal tax
schedule, starting with the original Mirrlees paper.

One needs to specify the social welfare function, the
utility function, and the ability distribution.

See the handout for Mirrlees results.

Many different shapes emerge and it seems hard to get
general results.

Answers are particularly sensitive to the specification of
the distribution of abilities, but this is not observable.

It is striking however that marginal tax rates are not
increasing.



Diamond (1988) AER finds conditions under which
marginal rates are increasing for sufficiently high in-
comes.

He assumes that

ϕ(l) = Al1+1/ε

This implies that

ε(a) =
a2(1− T ′(y(a)))

y(a)ϕ′′(y(a)
a )

=
aϕ′(y(a)

a )

y(a)ϕ′′(y(a)
a )

= ε

He also assumes that above some ability level a0 the
distribution of productivities obeys a Pareto distribution
with a density function

f(a) =
B

a1+ς
.



This implies that
1− F (a)

af(a)

is constant above a0 (Diamond assumes no upper bound
on the ability distribution).

Thus the shape of the marginal tax rates above y(a0)

just depends on the third term [1 − D(a)
D(a) ] which is in-

creasing.

Accordingly, marginal tax rates are increasing for in-
comes above y(a0).

But this conclusion does rely on the quasi-linear pref-
erences (see the comment on Diamond by Dahan and
Strawczynski 2000)

Saez (2001) REStud represents the state of the art in
simulations.



He calibrates the exogenous ability distribution F (a)
which given the chosen utility function and the actual
U.S. tax schedule T (y) yields the actual empirically ob-
served U.S. income distribution.

His analysis assumes the same utility function as Dia-
mond and that Ψ(U) = logU

His analysis suggests a U-shaped pattern of marginal
rates to be optimal (see handout - note that ζ = ε).



Optimal Mixed Taxation

Suppose that the government can employ both non-
linear income taxation and linear commodity taxes.

What can be said about the optimal mixed tax system?

There is an important result that has been established
about this case.

Lets consider a model which combines the optimal com-
modity tax and optimal income tax models.

There are I consumers, indexed by i = 1, ..., I.

There are n consumer goods, indexed by j = 1, ..., n.

Denote labor by l.



Consumers are all endowed with l units of time but
differ in their productivities.

Consumer i produces ail efficiency units of labor if he
works an amount l.

Consumers have an identical utility function u(x, l),
where x = (x1, ..., xn).

Each good j is produced from labor with a linear tech-
nology, xj =

lj
αj
.

Assume competitive production so that the producer
price of good j is pj = αjw, where w is the wage rate.

Without loss of generality, let w = 1.

To raise the revenue, the government imposes linear
taxes on goods j = 1, ..., n. These are t = (t1, ..., tn).



The government also employs a non-linear income tax
schedule T (y) where y denotes earnings.

Letting R(y) = y − T (y) denote post-tax income, we
can summarize a tax system by (t, R(y)).

Government revenue under the tax system (t, R(y)) is

G =
∑
i

{
t · xi + ail

i −R(ail
i)
}

Assumption: The common utility function satisfies

u(x, l) = U(v(x), l)

where the function v(·) is continuous and exhibits non-
satiation.

This says that consumption goods and labor are weakly
separable.

It means that the consumer’s marginal disutility of labor
is the same at any pair of consumption bundles that
give rise to the same level of consumption utility v.



Proposition Let (to, Ro(·)) be any tax system such
that for all i the utility attained by consumer i

ui = max
(xi,li)

{u(xi, li) : (p+ to) · xi ≤ Ro(aili)},

is well-defined. Then there exists another tax system
(0, R(·)) which (i) provides all consumers the same util-
ity; (ii) induces the same labor supply from all con-
sumers; and (iii) provides the government with at least
as much revenue.

Thus, in this model, under the Assumption, commodity
taxes are redundant when non-linear income taxes are
available.

This result was first proved by Atkinson and Stiglitz
JPubE (1976).



This particular formulation is taken from Laroque EcLett
(2005) as is the following proof.

Proof: From the point of view of consumers, any tax
system (t, R(·)) is equivalent to a set V = (ϕ(y), y)
where ϕ(y) is the utility derived from consumption when
pre tax income is y; that is

ϕ(y) = max
x
{v(x) : (p+ t) · x ≤ R(y)},

and y ≥ 0.

Indeed, consumer i chooses his labor supply by maxi-
mizing U(ϕ(ail), l).

Let consumption utility under the tax system (to, Ro(·))
be denoted by

ϕo(y) = max
x
{v(x) : (p+ to) · x ≤ Ro(y)}.

Denote consumer i’s labor supply under the tax system
(to, Ro(·)) by lio.



Define

x(y) = arg min{p · x| v(x) ≥ ϕo(y)},

and let
R(y) = p · x(y).

Thus x(y) is the cheapest way of reaching consumption
utility ϕo(y) given the prices p and R(y) is the cost of
that cheapest bundle.

Given the assumed properties of v it is the case that

x(y) = arg max
x
{v(x) : p · x ≤ R(y)}.

Now consider the tax system (0, R(·)).

This keeps the set V exactly the same as under (to, Ro(·))
since, for all y

max
x
{v(x) : p · x ≤ R(y)} = ϕo(y).



Since consumer i has the same choices as before, he
chooses the same labor supply lio.

Consumer i chooses the consumption bundle x(ail
i
o)

and obtains the same utility as under the original tax
system (to, T o(·)).

It remains to show that the government obtains at least
as much revenue.

Let xio denote i’s consumption under the original tax
system (to, T o(·)).

Then, since v(xio) = ϕo(ail
i
o), we have that

p · xio ≥ p · x(ail
i
o) = R(ail

i
o)

This is because x(ail
i
o) is the cheapest way of reaching

ϕo(ail
i
o).



Thus,∑
i

{
to · xio + ail

i
o −Ro(ailio)

}
=
∑
i

{
ail

i
o − p · xio

}
≤
∑
i

{
ail

i
o −R(ail

i
o)
}
.

�

Observe that when p ·xio > p ·x(ail
i
o) which will be the

case with tax distortions, government revenue is strictly
higher without the commodity taxes.

This permits a Pareto improvement when commodity
taxes are eliminated.

The weak separability assumption is viewed by many
as a good starting point in discussions of optimal tax
policy and thus this result is seen as fundamental.



II. Public Goods

A public good is a good for which use of a unit by one
consumer does not preclude its use by others.

This property is known as non-rivalness in consumption.

Classic examples are lighthouses, radio broadcasts, na-
tional defense, and air quality.

Public goods can be excludable or non-excludable.

Once a non-excludable public good has been provided
to one consumer, it is impossible to prevent others from
consuming it.

Lighthouses and national defense are non-excludable;
Pay-per-view TV broadcasts are excludable.

Public goods are sometimes defined to be goods that
are both non-rival in consumption and non-excludable.



Many goods lie between the extremes of a public good
and a private good in that they can be shared, but
eventually additional consumers impose negative exter-
nalities on others.

This type of good is referred to as a public good with
congestion or an impure public good.

Public goods are interesting to public economists be-
cause they will be under-provided by the market.

The neo-classical theory of public goods developed by
Samuelson (1954) explains why.



The Neo-classical Theory of Public Goods

A Model

Consider a community consisting of n consumers in-
dexed by i = 1, ..., n

There are two goods - a numeraire private good z and
a public good x

Each consumer i has quasi-linear utility

ui = zi + ϕi(xi)

where ϕi(·) is increasing, strictly concave and satisfies
ϕi(0) = 0.

zi is consumer i’s consumption of the private good and
xi his consumption of the public good.



Each consumer i has some endowment of the numeraire
(or income) yi.

The cost (in terms of units of the numeraire) of pro-
viding a unit of public good is c.

An allocation for this community consists of a descrip-
tion of what each consumer is consuming (zi, xi)

n
i=1

An allocation (zi, xi)
n
i=1 is feasible if (i) for all i, xi ∈

[0, x] and zi ≥ 0 and (ii)∑
i

zi ≤
∑
i

yi − cx.

The interpretation is that x is the aggregate amount of
public good produced.

Constraint (i) says that no consumer can consume more
public good than the total amount provided.



Note the difference in this feasibility constraint from
the one for a private good.

If the public good is non-excludable then it must be the
case that for all i, xi = x.



Efficiency

An allocation (zi, xi)
n
i=1 is Pareto efficient if (i) it is

feasible and (ii) there exists no alternative feasible al-
location which Pareto dominates it.

Proposition 1 An allocation (zei , x
e
i )
n
i=1 such that zei >

0 for all i is Pareto Efficient if and only if (i) for all i,
xei = xe; (ii)∑

i

ϕ′i(x
e) ≤ c ( = if xe > 0),

and (iii)
∑

i z
e
i =

∑
i yi − cxe.

You will be asked to prove this proposition in the next
problem set.

Condition (i) says that all consumers must get to con-
sume all the public good provided.

This will necessarily be satisfied if the public good is
non-excludable.



Condition (ii) says that the optimal level of the public
good is such that the sum of marginal benefits must
equal the marginal cost.

This is known as the Samuelson Rule.

Condition (iii) says that all the economy’s resources
should be used for consumption.

In this model the efficient level of the public good xe is
independent of the allocation of the numeraire among
consumers.

This comes from the quasi-linear preferences and is not
a general feature.

In general, it does not make sense to talk about the
efficient level of the public good.



Market Provision of Public Goods

(i) Non-excludable public goods

Suppose the public good is provided via the market
mechanism, with no collective action by the consumers.

Competition would ensure that the price of a unit of
public good were c.

How much would each consumer choose to buy?

The amount demanded by a consumer would depend
upon what he expected others to demand.

Thus, we have a strategic problem as opposed to a
decision-theoretic problem.



Let ωi denote the amount of public good purchased by
consumer i.

A vector of public good purchases (ω∗i )
n
i=1 is an equi-

librium if

ω∗i = arg max
ωi∈[0,yi/c]

yi − cωi + ϕi(
∑
j 6=i

ω∗j + ωi)

An allocation (z∗i , x
∗
i )
n
i=1 is a market equilibrium if there

exists an equilibrium vector of public good purchases
(ω∗i )

n
i=1 such that for all i (i) x∗i =

∑
j ω
∗
j and (ii)

z∗i = yi − cω∗i .

Proposition 2: Suppose that the efficient level of the
public xe is positive. Then if (z∗i , x

∗
i )
n
i=1 is a market

equilibrium it is not efficient.

Proof: A market equilibrium satisfies conditions (i) and
(iii) of Proposition 1, but not condition (ii).



In a market equilibrium, for all consumers i

ϕ′i(
∑
j

ω∗j ) ≤ c ( = if ω∗i > 0).

This follows from the first order condition for the con-
sumer’s problem.

It follows that if xe > 0, the market must under-provide
the public good.

If ω∗i = 0 for all i this is immediate.

If ω∗i > 0 for some i, then we must have that∑
i

ϕ′i(
∑
j

ω∗j ) > c

which implies that
∑

j ω
∗
j < xe. �

The problem with the market is free-riding - everybody
free rides on everybody else’s provision.



(ii) Excludable Public Goods

When public goods are excludable, market provision is
more promising, because free riders can be excluded.

However, it is not obvious how to think about market
provision since a public goods producer can sell the
same unit of the good to multiple consumers.

An idealized notion of how a market for excludable
public goods might work is the Lindahl equilibrium

An allocation (z∗i , x
∗
i )
n
i=1 is a Lindahl equilibrium if

there exists an equilibrium vector of personalized
public good prices (p∗i )

n
i=1 such that (i) for all i

(z∗i , x
∗
i ) solves the problem

max zi + ϕi(xi)
s.t. zi + p∗ixi = yi

;

(ii) for all i and j, x∗i = x∗j ; and (iii)
∑

i p
∗
i = c.



The logic of the Lindahl equilibrium is that each con-
sumer faces a personalized price which induces him to
choose the same level of public good.

Firms producing the public good receive the sum of
these personalized prices for each unit they produce -
hence condition (iii) of the definition.

Proposition 3: If (z∗i , x
∗
i )
n
i=1 is a Lindahl equilibrium,

it is Pareto efficient.

Proof: For all consumers i

ϕ′i(x
∗
i ) = p∗i ,

and
x∗i = x∗.

Moreover, ∑
i

p∗i = c.



Accordingly, ∑
i

ϕ′i(x
∗) = c.

Thus all three conditions from Proposition 1 are satis-
fied. �

The Lindahl equilibrium is unrealistic in the sense that
everybody faces a personalized price, which makes them
demand the same level of the public good.

If there is a common price, inefficiency will result.

To illustrate, change the model to make the public good
discrete; that is, assume x ∈ {0, 1}

Assume that
∑

i ϕi(1) ≥ c, so that xe = 1.

Recall efficiency requires not only that the good be pro-
vided but also that all consumers consume it.



The Lindahl personalized public good prices (p∗i )
n
i=1would

be such that for all i, p∗i ∈ [0, ϕi(1)] and
∑

i p
∗
i = c

But suppose each consumer’s price must be the same.

For all p, let

D(p) = #{i : ϕi(1) ≥ p}

Suppose that for all p

pD(p) < c.

Then the market would not provide the good.

If pD(p) ≥ c for some p, then the market would provide
the good at the price such that pD(p) = c (assuming
such a price exists!)

But individuals for whom ϕi(1) < p would be ineffi-
ciently excluded.



Conclusion

The bottom line is that market mechanisms are unlikely
to provide public goods efficiently.

This suggests a case for government provision.

In principle, the government can provide the efficient
level, financing it with taxation, and then allow all con-
sumers to consume it.



Post Neo-classical Public Goods Research

1. Mechanism Design

A large body of work has studied the design of “mecha-
nisms” that the government can use to determine public
good provision.

The motivation for this literature is as follows:

(i) market mechanisms will fail to provide public goods
efficiently, suggesting the government should do it;

(ii) to provide public goods efficiently, the government
needs to know individuals’ willingness to pay for public
goods;

(iii) individuals need to be given appropriate incentives
to reveal their true willingness to pay.



To illustrate, consider the following parameterized ver-
sion of our public goods model.

Each consumer i has quasi-linear utility given by

ui = zi + θi lnxi

where θi > 0.

By the Samuelson Rule, the efficient level of the public
good is

x∗ =

∑
i θi
c

and hence the government needs to know the θi in order
to figure out the efficient level.

Suppose that a naive government were to ask each indi-
vidual what his θi were and then provide the Samuelson
level, financing it by a uniform “head tax”.

Would an individual have an incentive to truthfully re-
veal his willingness to pay?



It is easy to see that truth telling is not a dominant
strategy.

Assuming that all other individuals are telling the truth,
citizen i’s problem would be to choose a report ri to
maximize

yi −
c

n
(

∑
j 6=i θj + ri

c
) + θi ln(

∑
j 6=i θj + ri

c
).

The solution to this problem is

ri = nθi −
∑
j 6=i

θj 6= θi

The question then is: is it possible to find rules for the
provision and financing of the public good that would
both lead individuals to report their true valuations and
enable the government to achieve efficiency?

The rules for provision and financing represent the mech-
anism and can be represented as functions x(r1, ..., rn)
and {ti(r1, ..., rn)}ni=1.



When considering the problem of mechanism design,
it is necessary to specify how individuals will behave
in submitting their reports - this is because submitting
reports is a strategic choice.

There are two main approaches: require that truth-
ful reporting be a Dominant Strategy equilibrium or a
Bayesian Nash equilibrium.

The three main results in the literature are as follows:

Result 1 There exists a mechanism that with quasi-
linear preferences enables the government to provide
the efficient level of the public good when true reporting
is a dominant strategy equilibrium.

This is known as the Pivot Mechanism or the Vickrey-
Clarke-Groves Mechanism.

Result 2 There is no mechanism that enables the gov-
ernment to provide both the efficient level of the public
good and balance its budget when true reporting is a
dominant strategy equilibrium.



This means that it is impossible to achieve full effi-
ciency; i.e., both conditions (ii) and (iii) of Proposition
1.

Result 3 There exists a mechanism that with quasi-
linear preferences enables the government to provide
the efficient level of the public good and balance its
budget when true reporting forms a Bayesian Nash equi-
librium.

There is still a large amount of on-going research on
mechanism design, but it has yet to yield practically
useful results in the public goods context (in contrast
to the theory of auctions).

More information on this literature can be found in
Mas-Colell, Green, and Whinston.



2. The Political Economy of Public Good
Provision

A large amount of work has focused on the political
determination of public good provision.

The motivation is that public goods are typically
provided by government and we want to understand
the forces that shape their provision.

A major focus of this research is to understand how
political decision-making distorts provision away from
the normative ideal.

There are many different approaches and we will cover
only the standard one.

This assumes that there is some predetermined method
of financing (e.g., head tax, income tax) and that given
this the political process will select the majority pre-
ferred level of the public good.



The justification for this assumption is not completely
clear, but the basic idea is that only a majority pre-
ferred level would be stable in the sense of not being
vulnerable to being voted out by a majority of citizens.

To illustrate the approach, suppose that the public good
is to be financed by a head tax.

Then using the parameterized utility function from be-
fore, consumer i’s preferences over public good levels
are

vi(x) = θi lnx− c

n
x

The ideal level of the public good from the viewpoint
of consumer i is x∗i = nθi/c.

A level of public good x∗ is majority preferred if for any
x 6= x∗ a majority of consumers prefer x∗ to x.

There is a convenient chracterization of the majority
preferred public good level - if consumers’ preferences
over policy are single-peaked, it is the level preferred by
the median voter.



Consumer m is a median voter if less than half the
population prefer a lower level of the public good and
less than half prefer a higher level.

In political economy models of public good provision, it
is therefore often simply assumed directly that the level
preferred by the median voter will be selected.

Note that this level will equal the Samuelson level if
and only if

θm =

∑
i

θi

n
.

The condition is that the median voter is also the mean
voter.

There is no reason to suppose that this will be the case.

Large differences between the median voter’s preferred
level and the Samuelson level arise when there are sig-
nificant differences in the intensity of preferences be-
tween those on either side of the median.



3. Optimal Provision of Public Goods
when Taxation is Distortionary

The Samuelson Rule assumes that the government
can finance public good provision with
non-distortionary “lump-sum” taxation.

In reality, this is unlikely to be the case for reasons
that we have already discussed.

When public goods must be financed by distortionary
taxation, the Samuelson Rule needs to be modified.

Much attention has been devoted to understanding
how.

Results depend on what tax instruments are available
and the underlying economic environment.

The simplest case is that in which individuals are identi-
cal and the government finances public good provision
with a linear income tax.



To analyze this case, extend our public good provision
model to have three goods - a public good x; consump-
tion z; and labor l.

Each citizen’s utility is

ui = zi + ϕ(x)− l(1+ 1
ε

)

1 + ε
,

where ε > 0.

Individuals have no endowments of income but all can
work at the exogenous wage rate w.

Given the wage rate w each citizen will work an amount
l∗(w) = (εw)ε, so that ε is the elasticity of labor supply.

The associated indirect utility function is given by

v(w, x) =
εεwε+1

ε+ 1
+ ϕ(x).



The government raises funds with a proportional tax on
labor income at rate t.

The revenues raised with tax rate t are given by

R(t) = ntwl∗(w(1− t)) = nt(1− t)εεεwε+1.

Such a revenue function is known as a Laffer Curve.

The function is hump-shaped and maximized at the tax
rate t = 1/(1 + ε).

If the tax rate exceeds 1/(1 + ε), the economy is said
to be “on the wrong side of the Laffer Curve”.

The levels of the public good x that are feasible are:

x ∈ [0,
R( 1

1+ε)

c
].

For any x in this range, there exists a unique tax rate
t(x) in the range [0, 1/(1 + ε)] which raises enough
revenue to finance it; i.e., which satisfies R(t) = cx.



The tax rate function t(x) is increasing in x, with
derivative

dt(x)

dx
=

c

R′(t)
=

c

(1− t)ε−1[1− t(1 + ε)]nεεwε+1

Given that individuals are identical, the Pareto efficient
public good level solves the problem

max
x∈[0,R( 1

1+ε
)/c]

nv(w(1− t(x)), x).

The first order condition is that

nϕ′(x∗) = nεε[w(1− t(x∗))]εwdt(x
∗)

dx

= (
1− t(x∗)

1− t(x∗)(1 + ε)
) · c

The expression in brackets is known as the marginal
cost of public funds.

It represents the social cost of raising an additional $1
of tax revenue and exceeds 1.



The optimal level of public goods is below that pre-
scribed by the Samuelson Rule.

The intuitive reason is that in addition to the direct
costs of providing the public good (i.e., c) there is a
distortionary cost created by the financing.

That such considerations would reduce the optimal level
of public goods was first noted by Pigou in the 1940s.

Nonetheless, this under-provision result can be reversed
in more complicated models.

In a general optimal commodity tax model with public
goods, it could be that the public good is complemen-
tary with highly taxed consumer goods.

In this case government revenues will be increased when
public good provision is expanded (see Atkinson and
Stern (1974)).



Alternatively, in a world with heterogeneous consumers,
the public good could be valued more by consumers
with higher social weight (i.e., the poor).

In models with non-linear income taxes, the Samuelson
Rule remains valid if individuals have identical utility
functions and if consumer goods and the public good
are weakly separable from labor.

Thus, in a model with three goods - a public good x;
consumption z; and labor l - if we can write utility as

u(z, x, l) = U(v(z, x), l)

for some real valued function v(z, x), increasing in both
arguments, the Samuelson Rule applies.

In the next problem set, I will ask you to verify this in
a two type Mirrlees model extended to include public
goods.



To extend the model, we will assume that consumers
have utility functions

z +B(x)− ϕ(l)

and that the cost of the public good is c per unit.

Boadway and Keen (1993) provide a general treatment
of the two type Mirrlees model with public goods.



4. Private Provision of Public Goods

4.1 Voluntary Contributions

A large body of work studies private voluntary
contributions to public goods, with leading
applications being to charitable giving and
contributions to public radio.

The starting point is the basic model of private
purchases of a non-excludable public good that we
studied last time; although with utility functions that
are general

ui = ui(zi, x)

The assumptions imposed on the utility function are
the usual ones plus the requirement that both goods
are normal.



The model of voluntary contributions is as follows: let
ωi denote the amount contributed by citizen i.

Then a vector of contributions (ω∗i )
n
i=1 is an equilibrium

if
ω∗i = arg max

ωi∈[0,yi]
ui(yi − ωi,

∑
j 6=i

ω∗j + ωi)

The public good is measured in dollar terms, so effec-
tively c = 1.

This model turns out to have some very strong impli-
cations - see Andreoni’s survey article “Philanthropy”
for a good discussion.

The first implication concerns crowd out.

Let (ω∗i )
n
i=1 be an equilibrium without government and

suppose the government were to now provide some
public good, so that the total amount provided was∑

j ωj + g where g is the publicly provided level.



Suppose this was financed by taxing each individual
cg/n.

Then, if cg/n ≤ ω∗i for each citizen i, the total amount
of the public good provided would remain unchanged.

To see why, note that if

ω∗i = arg max
ωi∈[0,yi]

ui(yi − ωi,
∑
j 6=i

ω∗j + ωi)

then, provided that ω∗i ≥ cg/n, we have that

ω∗i −
cg

n
=

arg max
ωi∈[0,yi]

ui(yi −
cg

n
− ωi,

∑
j 6=i

(ω∗j −
cg

n
) + ωi + cg).

Thus there is 100% crowd out of private provision!

This notion of crowd out is much beloved by conserva-
tive economists.



In reality, of course, many people do not contribute
anything so that cg/n > ω∗i for many citizens.

In this case, public provision will raise total provision.

However, it can be shown (see Andreoni’s survey pa-
per), that if the number of private contributors remains
(numerically) large, the increase in total provision must
be small, so there is still almost 100% crowd out.

The second implication concerns what happens when
we increase the number of citizens; i.e., let n become
large.

Then the proportion of citizens contributing shrinks to
zero and the average per person contribution shrinks to
zero.

Both implications are inconsistent with what we know
about charitable giving and contributions to public ra-
dio.



Large proportions of citizens contribute to charities like
the United Way or Red Cross.

Kingma JPE (1989) studies how public radio contribu-
tions respond to different government contributions.

He found that for every $1 increase in government fund-
ing, private contributions fell by 13.5cents - very small
crowd out.

Brunner Public Choice (1998) studies how contribu-
tions to public radio depend on the size of the listening
audience.

He finds that the proportion of contributors decreases
in the size of the listening audience, but that there is
no effect on the average contribution per contributor.

This model of voluntary contributions has also been
subject to intense scrutiny in laboratory experiments.



A simple example of the type of experiment used is as
follows:

5 undergrads are placed in a room to play 10 rounds of
a simple game.

In each round, the students are given $1.

They can keep it or place it in a public fund.

All dollars placed in the public fund are doubled and
divided equally among the players.

The voluntary contribution model predicts that no player
would ever contribute to the public fund, but in the lab
30-70% of players contribute.

Moreover, even though contribution rates tend to de-
cline over the rounds of play, they rarely go to zero.



Alternative Models

The poor performance of the standard voluntary con-
tribution model has lead researchers to develop alter-
natives.

Andreoni JPE (1989) proposes the Warm Glow Model,
whereby citizens’ utility is allowed to depend directly
on the contributions they make.

Thus,
ui = ui(zi, x, ωi)

This model delivers sensible predictions, but begs the
question as to why individuals care about their specific
contributions.

One option which has been suggested here is that in-
dividuals contribute to signal something about them-
selves - e.g., their wealth.



However, many contributions are unobserved.

Another option is that individuals experience pride when
they give or feel guilt if they do not.

Without knowing why people care about their own con-
tributions, it is difficult to know how to treat the utility
from giving in policy analyses.

For example, consider evaluating a policy that replaces
private contributions to a public good with tax-financed
contributions without changing any individual’s contri-
bution or the total amount provided.

Are people worse off or better off? This is unclear.



Further Developments

Interest in voluntary contributions to public goods has
led into more detailed empirical study of individuals’
charitable giving and also the fund-raising behavior of
non-profits.

This interesting research is discussed in Andreoni’s sur-
vey paper.

Also, some very interesting field experiments are being
performed with charitable giving - for example, Karlan
and List AER (2007).



4.2 Provision via Advertising

A second (much smaller) strand of literature on the
private provision of public goods looks at provision via
advertising.

Think of broadcasting, which is a leading example of a
public good.

Historically and still today in many countries it is a
non-excludable public good, in the sense that if you
have the hardware (radio or tv) you can pick up the
signals for free.

Nonetheless, in most developed countries, the bulk of
broadcasting is supplied by the market.

Market provision is possible because broadcasters put
advertisements on their broadcasts and sell advertising
slots to producers wishing to advertise their products.



The internet, newspapers and yellow page directories
are the same.

Such advertising means that broadcasting performs a
dual role in the economy - providing programming to
consumers and allowing producers to contact viewers.

It is natural to wonder about the efficiency of market
provision of public goods like broadcasting and there
are lots of interesting regulatory issues.

For example, excessive advertising; amount, quality,
and variety of programming; ownership structure; de-
sirability of pricing.

Anderson and Coate (2005) initiate an analysis of these
issues.

A-C model a broadcasting system in which programs are
broadcast over the air and viewers/listeners can cost-
lessly access programming.

We consider only the one channel version - see the pa-
per for the multi-channel version.



Anderson-Coate Model

There is one channel which can broadcast one program.

The program can carry advertisements.

Each advertisement takes a fixed amount of time and
thus ads reduce the substantive content of a program.

The cost of producing the program is independent of
the number of ads and equals K.

There are N potential viewers, each characterized by a
taste parameter λ ∈ [0, 1].

A type λ viewer obtains a net viewing benefit β−γa−
τλ from watching the program with a advertisements
where τ > β > 0 and γ > 0.

Not watching the program yields a zero benefit.



γ measures the nuisance cost of ads and τ measures
the extent to which higher types dislike the program.

Viewers’ tastes are uniformly distributed, so that the
fraction of viewers with taste parameter less than λ is
just λ.

Ads are placed by producers of new goods and inform
viewers of the nature and prices of these goods.

There are m producers of new goods, each of which
produces at most one good.

New goods are produced at a constant cost per unit,
wlog set equal to zero.

Each new good is characterized by some type σ ∈ [0, σ]
where σ ≤ 1.

A viewer has willingness to pay ω > 0 with probability
σ for a new good of type σ and willingness to pay 0
with probability 1− σ.



The fraction of producers with new goods of type less
than σ is F (σ).

Since a consumer will pay ω or 0, each new producer
will advertise a price of ω.

Thus, a new producer with a good of type σ is willing
to pay σω to contact a viewer.

Accordingly, if an advertisement reaches V viewers and
costs P , the number of firms wishing to advertise is
ad(P, V ) = m · [1− F (P/V ω)].

Let P (a, V ) denote the corresponding inverse demand
curve.

Since viewers get no surplus from new goods, they get
no informational benefit from watching a program with
advertisements.

Viewers therefore choose to watch the program only if
their net viewing benefit is positive.



Optimal provision

Think of the program as a discrete public good which
costs K to provide and may be consumed by two types
of agents - viewers and advertisers.

An advertiser “consuming” a program, places its adver-
tisement on that program.

The optimality problem is to decide if the public good
should be provided and who should consume it.

Following the Samuelson Rule, provision will be desir-
able if the sum of benefits exceeds cost.

Suppose that the program has a advertisements and
hence is “consumed” by a new producers.

Then, viewers for whom λ ≤ β−γa
τ will watch and ob-

tain a benefit β − γa− τλ.



If the a advertisements are allocated to the new produc-
ers who value them the most, the benefits generated by
the program are

B(a) = N

∫ β−γa
τ

0
(β − γa− τλ)dλ

+

∫ a

0
P (α,N(

β − γa
τ

))dα.

The optimal level of advertising equates marginal social
benefit and cost.

The marginal social benefit is the increase in advertiser
benefits created by an additional advertisement which
is

P (a,N(
β − γa
τ

))−N γ

τ

∫ a

0

∂P

∂V
dα.

The marginal social cost is the reduction in viewer ben-
efits created by an additional advertisement, which is

N(
β − γa
τ

)γ.



The situation can be illustrated graphically.

Provision is desirable if the operating cost K is less
than the maximized benefits B(ao).



Market provision

Imagine the channel is controlled by a profit-maximizing
broadcaster.

The broadcaster chooses whether to broadcast the pro-
gram and, if so, the level of advertising.

If it runs a advertisements, its program will be watched
by viewers for whom λ ≤ β−γa

τ .

To sell a advertisements it must set a price P (a,N(β−γaτ ))
so its revenues will be

π(a) = P (a,N(
β − γa
τ

))a.

The revenue maximizing advertising level, a∗, is the
level at which marginal revenue is zero; i.e.,

P (a∗, N(β−γa
∗

τ )) +
∂P (a∗,N(β−γa

∗
τ

))

∂a a∗

−N γ
τ

∂P (a∗,N(β−γa
∗

τ
))

∂V a∗ = 0.

The broadcaster will provide the program if π(a∗) ex-
ceeds K.



Optimal vs Market Provision

Conditional on the broadcaster providing the program,
will it have too few or too many advertisements?

Proposition 1 a∗ < ao for γ low enough and a∗ > ao

for γ high enough.

This proposition can be established diagrammatically.

The most striking finding is the possibility that the pro-
gram has too few ads.

The reason is that the broadcaster has a monopoly in
delivering its audience to advertisers.

The broadcaster holds down ads in order to keep up the
prices it receives.



This logic applies even with competitive broadcasters,
if each broadcaster has a monopoly in delivering its
audience to advertisers.

Turning to programming, the question is whether the
monopoly will make an efficient decision with respect
to the broadcast of the program.

Proposition 2 There exists a range of operating costs
for which the broadcast should optimally be provided
but the broadcaster will not provide it.

To establish this, we need only show that

B(ao) > π(a∗).

But this follows from the fact that

π(a∗) = P (a∗, N(β−γa
∗

τ ))a∗

<
∫ a∗

0 P (α,N(β−γa
∗

τ ))dα+N
∫ β−γa∗

τ
0 (β − γa∗ − τλ)dλ

≤ B(ao)



Intuitively, the broadcaster’s profits are bounded by the
advertiser surplus, but total surplus includes viewer and
advertiser surplus.

The market may produce something close to the opti-
mum for a range of parameter values; that is, the pro-
gram could be provided and the advertising level could
be approximately optimal.

Thus the market does not necessarily provide broad-
casting inefficiently.



5. Durable Public Goods

In practice, many important public goods are durable,
lasting for many years and depreciating relatively
slowly.

Important examples are public infrastructure, defense
capability, and environmental quality.

For a durable public good, the level in period t is
given by

gt = (1− δ)gt−1 + It,

where δ is the depreciation rate and It is investment
in period t.

A distinction is made between irreversible and
reversible public goods: for the former, investment
must be non-negative and for the latter disinvestment
is possible (i.e., It can be negative).

Recent years have seen increasing interest in this type
of public good.



While it is relatively straightforward to derive the rules
for the optimal provision of such goods (next problem
set?), understanding private and political provision is
much more challenging.

This is because the durable nature of these goods cre-
ates a dynamic linkage across decision-making periods.

Battaglini, Nunnari, and Palfrey (2012) analyze the pri-
vate provision of durable public goods in a model which
is the natural dynamic extension of the standard static
model.

There are n infinitely-lived consumers indexed by i =
1, ..., n

There are two goods - a numeraire private good z and
a public good x



Each consumer i has per-period utility given by the
quasi-linear function

ui = zi + ϕ(x)

where ϕ(·) is increasing, strictly concave, and satisfies
ϕ(0) = 0 and the Inada conditions.

In each period, each consumer obtains an income y.

The cost (in terms of units of the numeraire) of pro-
viding a unit of public good is 1.

Consumers have discount rates β ∈ (0, 1).

In each period, given the current level of the public
good x, each consumer chooses how much investment
to privately provide ωi.

Next period’s public good level is then given by

x′ = (1− δ)

(
x+

∑
i

ωi

)
.



The authors focus on symmetric Markov equilibria which
are described by a common private investment strategy
ω(x) and a value function V (x).

In the irreversible case, ω(x) and V (x) must satisfy the
conditions that

ω(x) =

arg max
ω∈[0,y]

{
y − ω + ϕ(x+ (n− 1)ω(x) + ω)

+βV ((1− δ)[x+ (n− 1)ω(x) + ω])

}
,

and

V (x) = y−ω(x)+ϕ(x+nω(x))+βV ((1−δ) [x+ nω(x)]).

Battaglini et al show that the consumers’ contributions
are gradual and aggregate investment is inefficiently
slow.

However, with sufficiently patient consumers (β → 1)
and a sufficiently durable public good (δ → 0) the equi-
librium level of the public good converges to the effi-
cient level.



III. Externalities

An externality arises whenever the utility or production
possibility of an agent depends directly on the actions
of another agent.

The caveat of “directly” is important because every-
body’s actions impact everybody else through the price
mechanism.

Price related effects are known as pecuniary external-
ities and these have no implications for government
intervention.

Externalities can go from producers to consumers, con-
sumers to consumers, and producers to producers, and
can be negative or positive.

Externalities are interesting to public finance economists
because they create market failure.

Government intervention to regulate externalities is very
widespread, most notably in the area of the environ-
ment.



1. Simple Models of Externalities

Many different models of externalites can be
constructed - producer-producer, producer-consumer,
etc.

Consumer-consumer Externality

Consider a community consisting of 2 consumers
indexed by i = 1, 2

Suppose that there are two goods - a numeraire good
z and another good x (think cigarettes)

Consumer 1 has utility function

u1 = z1 + ϕ(x1)

where ϕ(·) is increasing, strictly concave and satisfies
ϕ(0) = 0.



Here z1 is 1’s consumption of numeraire and x1 his
consumption of the other good.

Consumer 2 has utility function

u2 = z2 − ξ(x1)

where ξ(·) is increasing, strictly convex and satisfies
ξ(0) = 0.

Thus, consumer 2 gets no utility from his own con-
sumption of good x, and negative utility from 1’s con-
sumption (for example, 2 is a non-smoker and 1 is a
smoker).

Each consumer i has some endowment of the numeraire
(or income) yi.

The cost (in terms of units of the numeraire) of pro-
viding a unit of good x is c.

An allocation for this community consists of a descrip-
tion of what each consumer is consuming (zi, xi)

2
i=1



An allocation (zi, xi)
2
i=1 is feasible if (i) for all i xi ≥ 0

and zi ≥ 0 and (ii)∑
i

zi + c
∑
i

xi ≤
∑
i

yi.

Efficiency

An allocation (zi, xi)
2
i=1 is Pareto efficient if (i) it is

feasible and (ii) there exists no alternative feasible al-
location which Pareto dominates it.

Proposition 1: An allocation (zei , x
e
i )

2
i=1 such that

zei > 0 for all i is Pareto Efficient if and only if (i)

ϕ′(xe1)− ξ′(xe1) ≤ c ( = if xe1 > 0),

(ii) xe2 = 0; and (iii)
∑

i z
e
i + c

∑
i x

e
i =

∑
i yi.

Condition (i) says that the level of 1’s consumption of
good x is such that social marginal benefit equals social
marginal cost.



Social marginal benefit includes both 1’s consumption
benefit and 2’s negative disutility from 1’s activities.

Market Failure

If good x is provided via the market, competition would
ensure that its price was c.

An allocation (z∗i , x
∗
i )

2
i=1 is a market equilibrium if

(z∗1 , x
∗
1) = arg max{z1 + ϕ(x1) : y1 ≥ cx1 + z1}

and

(z∗2 , x
∗
2) = arg max{z2 − ξ(x∗1) : y2 ≥ cx2 + z2}.

Proposition 2: Suppose that ϕ′(0) > c. Then if
(z∗i , x

∗
i )

2
i=1 is a market equilibrium it is not efficient.

While conditions (ii) and (iii) are satisfied, (i) is not.



In the market equilibrium, we have that

ϕ′(x∗1) = c

which implies that x∗1 > xe1.

Government Intervention

The government can restore efficiency by either impos-
ing a quota or a tax.

The quota could be imposed either on Mr 1’s consump-
tion of good x or on firms’ production of good x.

The tax could either be imposed on Mr 1’s consumption
or on firms’ production. The optimal tax is ξ′(xe1).

This type of tax is known as a Pigouvian corrective tax.

Any distributional consequences of the tax could be
dealt with by lump sum redistribution.



Producer-consumer Externality

There are n identical consumers.

There are two goods - a numeraire good z and another
good x.

Each consumer has utility function

u = z + ϕ(x)−D(E)

where ϕ(·) is increasing, strictly concave, and satisfies
ϕ(0) = 0, and D(·) is increasing, strictly convex, and
satisfies D(0) = 0.

The variable E is the level of environmental pollution
and D is the “damage function”.

Consumers have an endowment of the numeraire good
y.



Good x is produced from good z with the linear tech-
nology x = z/c by competitive firms

Each unit of x produced emits γ units of pollution.

Analysis

To simplify, we focus on efficient allocations in which
all consumers receive the same allocation.

Letting Z and X denote aggregate amounts of good z
and good x, the efficiency problem is

max Z
n + ϕ(Xn )−D(γX)
s.t. Z + cX = ny

The efficient level of X satisfies the first order condition

ϕ′(
Xe

n
) = c+ nD′(γXe)γ



The equilibrium level of X satisfies the first order con-
dition

ϕ′(
X∗

n
) = c

The equilibrium level is too high and the government
can restore efficiency by either imposing a quota or a
tax.

The optimal tax is nD′(γXe)γ.
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X
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Figure 1: Producer-Consumer Externality



2. Coase Theorem

Coase (1960) JLE pointed out that externality
problems arise from two factors: (i) lack of clearly
specified property rights and (ii) transactions costs.

To illustrate, consider the consumer-consumer
externality model and suppose we assign Mr 1 the
right to consume as much x as he likes and that there
are no transactions costs.

Then Mr 2, recognizing Mr 1’s right would offer him a
transfer in exchange for him cutting back his x
consumption.

Mr 1 would agree to the deal provided it made him
better off.

Assuming a one round bargaining procedure with Mr 2
making a take it or leave it offer, Mr 2 would make an
offer (T, x1) to solve

max y2 − T − ξ(x1)
y1 + T − cx1 + ϕ(x1) ≥ y1 − cx∗1 + ϕ(x∗1)



Clearly,

T = cx1 − ϕ(x1)− cx∗1 + ϕ(x∗1)

and thus, the level of x1 that 1 would choose solves

max y2 − cx1 + ϕ(x1)− ξ(x1)− cx∗1 + ϕ(x∗1)

which means that

ϕ′(x1)− ξ′(x1) ≤ c ( = if x1 > 0).

implying that x1 = xe1!

Alternatively, we could assign Mr 2 the right not to be
infringed by Mr 1’s consumption.

Then Mr 1, recognizing Mr 2’s right would offer him a
transfer in exchange for allowing him to consume x.

Mr 2 would agree to the deal provided it made him
better off.



Assuming a one round bargaining procedure with Mr 1
making a take it or leave it offer, Mr 1 would make an
offer (T, x1) to solve

max y1 − T − cx1 + ϕ(x1)
y2 + T − ξ(x1) ≥ y2

The same conclusion emerges - the negotiated level of
x1 would be efficient. This yields:

Coase Theorem: If property rights are clearly specified
and there are no transactions costs, bargaining will lead
to an efficient outcome no matter how the rights are
allocated.

The allocation of rights have distributional consequences,
but no efficiency consequences.

The allocation of rights is crucial because otherwise
the participants would be fighting over who should be
paying who.



What are the transactions costs that Coase had in mind?

Most obviously, if there are a large number of citizens
impacted by the externality, there will be significant
transactions costs to bring everybody to the table.

Less obviously, if participants have to pay an ex ante
cost in order for an agreement to be reached (such as
showing up to a meeting) this can lead to inefficiencies
arising for strategic reasons - see Anderlini and Felli
“Costly Bargaining and Renegotiation” Econometrica,
2001.

In this case an agreement need not be reached even
if the surplus created from such an agreement would
exceed the negotiation costs.

Imperfect information is also a problem.

Affected parties are unlikely to have perfect information
about each others’ benefits and costs.



With bilateral asymmetric information, bargaining will
not lead to an efficient outcome (Myerson and Satther-
waite, Journal of Economic Theory (1983)).

To illustrate these difficulties, return to our example,
but assume that x1 is a discrete choice; that is, x1 ∈
{0, x1}.

Further assume that

ϕ(x1) = ϕ(x1; θ)

and
ξ(x1) = ξ(x1; η)

where θ and η are random variables with ranges [θ, θ]
and [η, η].

Let
b(θ) = ϕ(x1; θ)− cx1

and
s(η) = ξ(x1; η)



Let G(b) and F (s) be the CDFs of the variables b and
s induced by the random variables θ and η.

Assume that Mr 2 has the right not to be infringed
by Mr 1’s consumption, so that without bargaining the
outcome will be x1 = 0.

This outcome will be inefficient whenever

b(θ) > s(η)

Now consider the bargaining problem, where Mr 1 offers
Mr 2 a transfer T in exchange for letting him consume
x1.

Mr 1 knows b but does not know s.

Mr 2 will agree if and only if T ≥ s. The probability of
this is F (T ).



Thus, given b, Mr 1 will choose T to solve

max
T

F (T )(b− T )

The objective function takes on value 0 at T = b and
is strictly positive at T ∈ (s(η), b).

Therefore the solution to the problem T ∗b is such that
T ∗b ∈ (s(η), b) if s(η) < b.

This implies inefficiency since Mr 2 will reject the offer
whenever

b > s > T ∗b .



3. Price vs. Quantity Regulations

In our simple models of externalities, government
intervention in either the form of a tax or a quota
could restore efficiency.

In more realistic models, there is a difference between
price and quantity regulation.

This was pointed out in by Weitzman REStud (1974).

This paper is a classic in the theory of externalities and
in environmental economics more generally.



Weitzman’s Model

The government is concerned with pollution reduction

Let q denote the amount of pollution reduction

C(q) is the cost of pollution reduction with C ′ > 0 and
C ′′ > 0

B(q) is the benefit of pollution reduction with B′ > 0
and B′′ < 0

It is assumed that B′(0) > C ′(0), so that some amount
of pollution reduction is socially desirable

The optimal level of pollution reduction is

q∗ = arg max{B(q)− C(q)}

which implies that B′(q∗) = C ′(q∗).



The government can achieve q∗ in two ways

1. quantity regulation–order firms or industry to do q∗

units of reduction

2. price regulation–pay firms a price p∗ = B′(q∗) for
each unit of reduction undertaken (this price could be
avoiding a tax)

Firms would then choose

q = arg max{p∗q − C(q)}

Notice that this framework is quite general - we can
convert our simple models of externalities from last time
into the framework.



Consumer-consumer Example

Define q = x∗1 − x1 where x∗1 is the market equilibrium
level of x1.

Also define the benefit and cost functions as following:

B(q) = ξ(x∗1)− ξ(x∗1 − q)
C(q) = {φ(x∗1)− cx∗1} − {φ(x∗1 − q)− c(x∗1 − q)}

= φ(x∗1)− φ(x∗1 − q)− cq

Mr 1 given the tax t would choose

q = arg max{tq − [φ(x∗1)− φ(x∗1 − q)− cq]}
(FOC) t+ c = φ′(x∗1 − q)

Thus,

B′(q) = ξ′(x∗1 − q)
C ′(q) = φ′(x∗1 − q)− c



Uncertainty

Suppose there is uncertainty in the costs and benefits
of pollution reduction, so that benefits are B(q, θ) and
costs are C(q, η), where θ and η are realizations of
independent random variables.

If the government could observe the realizations of θ
and η then it could achieve the first best reduction in
pollution by either a quantity regulation

q∗(θ, η) = arg max{B(q, θ)− C(q, η)}

or a price regulation

p∗(θ, η) = ∂B(q∗(θ, η), θ)/∂q

In reality, the government is unlikely to be able to con-
dition policy on the realizations of these shocks.



More realistically, the government must commit in ad-
vance to a required level of pollution reduction q or a
price p.

In this case, the optimal quantity of pollution reduction
is

q∗ = arg maxE[B(q, θ)− C(q, η)]
(FOC) E[∂B(q∗, θ)/∂q] = E[∂C(q∗, η)/∂q]

How about the optimal price regulation?

Given the price regulation p, firms will choose

q̂(p, η) = arg max{pq − C(q, η)}
(FOC) p = ∂C(q̂, η)/∂q

Thus, the optimal price regulation is

p∗ = arg maxE[B(q̂(p, η), θ)− C(q̂(p, η), η)]



In general it is not going to be the case that ∂B(q∗, θ)/∂q =
∂C(q∗, η)/∂q nor that ∂B(q̂, θ)/∂q = ∂C(q̂, η)/∂q.

Thus, we are in the world of second best and the ques-
tion is which policy instrument is better.

Define the advantage of price over quantity regulation
as

∆ = E[{B(q̂(p∗, η), θ)− C(q̂(p∗, η), η)}
−{B(q∗, θ)− C(q∗, η)}].

Assume the following functional forms for benefits and
costs in a neighborhood of q∗ (these are justified as
second order Taylor approximations around the point
q∗)

B(q, θ) =b(θ) + (B′ + β(θ))(q − q∗) +
B′′

2
(q − q∗)2

C(q, η) =a(η) + (C ′ + α(η))(q − q∗) +
C ′′

2
(q − q∗)2

E[β(θ)] =E[α(η)] = 0



Observe that

∂B(q, θ)/∂q = B′ + β(θ) +B′′(q − q∗)
∂2B(q, θ)/∂q2 = B′′

∂C(q, η)/∂q = C ′ + α(η) + C ′′(q − q∗)
∂2C(q, η)/∂q2 = C ′′.

This implies

E[∂B(q∗, θ)/∂q] = B′

E[∂C(q∗, η)/∂q] = C ′

E[∂2B(q∗, θ)/∂q2] = B′′

E[∂2C(q∗, η)/∂q2] = C ′′

Also let



σ2 = E[α2(η)]

= E[{∂C(q∗, η)/∂q − E[∂C(q∗, η)/∂q]}2]

= variance of MC at q∗

Weitzman’s Theorem:

∆ =
σ2

2(C ′′)2
[B′′ + C ′′]

The Theorem implies that ∆ > 0 (i.e. price regulation
is better than quantity regulation) if and only if C ′′ >
|B′′|.

To understand the result, consider the special case in
which θ is constant; i.e., there is no uncertainty in ben-
efits.

Suppose η can take on three values η1 < η2 < η3 such
that



∂C(q, η1)/∂q > ∂C(q, η2)/∂q > ∂C(q, η3)/∂q

Suppose that the government sets policies assuming
that η2 will arise

Case 1: If ∂B/∂q is flatter, i.e. |B′′| < |C ′′|, then we
can see diagrammatically that the deadweight cost of
quantity regulation is greater than that of price regula-
tion when η1 or η3 is realized.

Intuitively, when ∂B/∂q is flatter, quantity ranges over
a wider interval than price, thus making the outcome
harder to control with quantity regulation. See Figure
2.

Case 2: If ∂B/∂q is steeper, i.e. |B′′| > |C ′′|, then
the deadweight cost of quantity regulation is smaller
than that of price regulation.



p

q

p∗

(price
regulation)

∂C(q,η1)
∂q

∂C(q,η2)
∂q

∂C(q,η2)
∂q

∂B(q,θ)
∂q

q∗ = q̂(p∗, η2)
(quantity regulation)

q̂(p∗, η1) q̂(p∗, η3)

A

B

Figure 2: Case I: flat Marginal Benefit

A is an optimal point under η1 with a quantity regulation q̂(p∗, η1). B is

optimal under η3. Blue areas represent a dead-weight-loss with quantity

regulation under η1, and η3, respectively. Yellow areas represent a

dead-weight-loss with price regulation under η1, and η3, respectively.



When ∂B/∂q is steeper, price ranges over a wider in-
terval than quantity and quantity regulation turns out
to be better.

What determines whether |B′′| is greater or less than
|C ′′|?

We might expect that |B′′| is large when we are dealing
with pollution with threshold effects; i.e., there is some
critical level of pollution above which things get bad,
but below it things are o.k..



4. Tradeable Permits

A popular idea among environmental economists is
“cap and trade”.

The idea is to cap the total amount of pollution and
allow firms to trade permits to pollute.

The idea is useful in environments where government
is unwilling to directly tax pollution and has
incomplete information on firms’ costs of pollution
abatement.

The issues may be illustrated in an extension of our
producer-consumer externality model.



Model

There are n identical consumers with utility function

u = z + ϕ(x)−D(E).

Consumers have an endowment of the numeraire good
y.

There are m competitive firms producing good x.

Each unit of x produced emits γ(a) units of pollution
where a denotes pollution abatement efforts.

Assume that γ(0) = γ, γ′(a) < 0, and γ′′(a) > 0; for
example,

γ(a) =
γ

1 + a
.

The cost of producing a unit of x (in terms of the
numeraire) when pollution abatement effort is a is c+
ηa.



Letting Z and X denote aggregate amounts of good z
and good x, the efficiency problem is

max Z
n + ϕ(Xn )−D(γ(a)X)

s.t. Z + (c+ ηa)X = ny

The efficient levels of X and a solve

max y − (c+ ηa)
X

n
+ ϕ(

X

n
)−D(γ(a)X)

They satisfy the first order conditions

ϕ′(
Xe

n
) = c+ ηae + nD′(γ(ae)Xe)γ(ae)

and
−nD′(γ(ae)Xe)γ′(ae) = η

The equilibrium level of X satisfies the first order con-
dition

ϕ′(
X∗

n
) = c

and the equilibrium level of a is a∗ = 0.



Government Intervention

The government cannot achieve efficiency by imposing
a quota or a tax on X - it needs to regulate pollution
directly.

It can achieve efficiency by either imposing a tax
t = nD′(γ(ae)Xe) on emissions or providing each firm
with a permit to emit at most ρ = γ(ae)Xe/m units
of pollution.

You should verify this is the case.

This illustrates an imortant principle: it is always opti-
mal to directly regulate the source of the externality.



Now suppose that there are two types of firms.

m/2 of the firms are as we have just described and the
remaining m/2 are unable to abate their emissions (i.e.,
γ(a) = γ for all a).

Suppose further that the government is unable to dis-
tinguish between the two types of firms.

The solution to the efficiency problem is unchanged.

All production of x should be done by the producers
who can abate, but that creates no complications under
the assumed CRS technology.

The efficient solution could be achieved by a tax as
before, but the permit solution becomes problematic.

If the government provides each firm with a permit to
emit at most ρ = γ(ae)Xe/m units of pollution, the
efficient allocation will not be achieved.



The firms who cannot abate will continue to produce.

This difficulty is resolved by allowing the permits to be
tradeable.

In equilibrium, if permits are tradeable, all the firms who
cannot abate will sell their permits to those firms who
can abate and the efficient allocation will be reached.

Please try to verify this.



5. Optimal Taxation with Externalities

How does the presence of externalities impact optimal
taxation?

There is a literature on this dating back to Sandmo
(1975) who was the first to incorporate an externality
into an optimal commodity tax model.

It is straightforward to derive his result given what we
have already done.

We will incorporate a producer-consumer externality
into our optimal commodity taxation model.

To simplify, we focus on identical consumers.



Model

There are I identical consumers, indexed by
i = 1, ...., I.

There are n consumer goods, indexed by j = 1, ..., n

Denote labor by l

Each consumer’s utility function is

u(xi1, ..., x
i
n, l

i)−D(Xn).

where Xn is the aggregate output of good n and
D(·) is a damage function.

Thus, the production of good n creates a negative
externality.

Each good j is produced from labor with a linear tech-
nology, Xj = lj



Assume competitive production so that the producer
price of good j is pj = w, where w is the wage rate.

Without loss of generality, let w = 1, which means that
pj = 1 for all j.

The government needs to hire T units of labor and
therefore needs T units of tax revenue.

To raise the revenue, the government imposes linear
taxes on goods j = 1, ..., n. These are (t1, ..., tn).

Let q = (1 + t1, ..., 1 + tn) denote the post-tax price
vector.

Each consumer’s problem given the price vector q and
the wage w is

max
(x,l)
{u(x, l)−D(Xn) : q · x ≤ wl +R}

where x = (x1, ..., xn) and R denotes non-labor income
(which will be zero in the model).



This assumes that each consumer takes Xn as given
when choosing his own demands.

Each consumer’s indirect utility function can be writ-
ten as V (q, w,R)−D(Xn) and his demand function is
denoted x(q, w,R).

Since w = 1 and R = 0, we will just write V (q) −
D(Xn) and x(q) in what follows.

The government’s problem is:

max
q
I [V (q)−D(Ixn(q))] ,

s.t.

n∑
j

(qj − 1)Ixj(q) = T.



Analysis

The Lagrangian for the problem is

L = V (q)−D(Ixn(q)) + λ[
n∑
j

(qj − 1)xj(q)−
T

I
]

The first order conditions are

∂V

∂qk
− ID′∂xn

∂qk
= −λ(xk +

n∑
j

tj
∂xj
∂qk

) for k = 1, ..., n

By Roy’s Identity,

∂V

∂qk
= −αxk

where α is the marginal utility of income of a consumer;
that is, α = ∂V/∂R.



Using this definition:

αxk +D′I
∂xn
∂qk

= λ(xk +
n∑
j

tj
∂xj
∂qk

) for k = 1, ..., n

Recall the Slutsky equation:

∂xj
∂qk

= sjk − xk
∂xj
∂R

where sjk is the derivative of the compensated demand
function.

We can now write:

n∑
j=1

tjsjk−
D′I

λ
snk =

αxk
λ
− xk + xk

 n∑
j

tj
∂xj
∂R
− D′I

λ

∂xn
∂R

 .

Define



b =
α

λ
+

n∑
j

tj
∂xj
∂R
− D′I

λ

∂xn
∂R

= Net SMU of a consumer’s income

Using the symmetry of the Slutsky matrix, we get

n∑
j=1

tjskj −
D′I

λ
skn = −xk (1− b)

Dividing through by xk we obtain

−

(∑n
j=1 tjskj −

D′I
λ skn

xk

)
= 1− b

This is analogous to the basic Ramsey Rule that we
derived earlier.



To interpret the formula, define {tjp}nj=1 as follows:

tjp =

{
0 if j 6= n
D′I
λ if j = n

These are interpreted as the optimal Pigouvian tax rates.

This is because if we solved the problem with T = 0
and allowed the government to redistribute tax revenues
back to consumers via a uniform lump sum transfer,
the optimal taxes would satisfy these conditions (since
λ = α).

Next define {tjr}nj=1 as the solutions to

−

n∑
j=1

tjrskj

xk
= 1− b for all k



These are interpreted as the optimal Ramsey tax rates,
since if we solved the problem with D′ = 0, the optimal
rates would satisfy these conditions.

Letting tj denote the optimal Sandmo tax rate on good
j, we have

tj =

{
tjr if j 6= n

tnr + tnp if j = n

Thus, the optimal Sandmo tax rate can be expressed as
the optimal Ramsey rate plus a Pigouvian correction.

The optimal tax structure is therefore characterized by
an additivity property.

The marginal social damage of commodity n enters the
tax formula for that commodity additively and does not
enter the tax formulas for the other commodities.



Thus, the fact that a commodity involves a negative ex-
ternality does not justify taxing other commodities that
are complementary with it, or subsidizing substitutes.

This is an important conclusion.



6. Common Property Externalities

This type of externality arises whenever there is a
commonly owned resource.

Fish in the ocean, forests in LDCs are classic
examples.

There is quite a bit of work on this type of externality
in environmental economics.

I will outline the theory of market failure in this context,
drawing on Leach’s A Course in Public Economics.



Static Common Property Model

For concreteness consider the fishing context and as-
sume the following:

- Infinite number of potential fishermen

- Each fisherman operates one boat at cost w

- Total catch with b boats is

y(s, b)

where s is the current stock of fish. Assume that

y(s, 0) = 0, ∂y/∂s > 0, ∂y/∂b > 0, ∂2y/∂b2 < 0

- Per boat catch is y(s, b)/b

- x(p) is the aggregate demand for fish with inverse
p(x)



Optimal Number of Boats

The optimal number of boats maximizes aggregate
surplus, which is consumer surplus plus fishermen
surplus.

Formally, the problem is

max
b

∫ y(s,b)

0
p(x)dx− wb

The first order condition is:

(FOC) p(y(s, bo))
∂y

∂b
(s, bo) = w

This just says that the social marginal benefit of boats
is equalized with the social marginal cost.



Equilibrium Number of Boats

An equilibrium is a price of fish and a number of
boats such that demand equals supply of fish and
fishermen make zero profits.

Formally, (p∗, b∗) is an equilibrium if

(i) x(p∗) = y(s, b∗) <=> p∗ = p(y(s, b∗))

and

(ii) p∗(
y(s, b∗)

b∗
) = w

Result: The equilibrium number of boats is higher
than the optimal number; i.e., b∗ > b0

To see this note that in equilibrium

p(y(s, b∗))
y(s, b∗)

b∗
= w



But we know that the average product exceeds the
marginal product; i.e., y(s, b)/b > ∂y(s, b)/∂b, and
hence

p(y(s, b∗))
∂y(s, b∗)

∂b∗
< w

So at equilibrium there are too many boats.

Diagrammatically, this is easy to show for p = 1 (i.e.
perfectly elastic demand curve.)



Dynamic Common Property Model

A limitation of the static model is that it takes the stock
of the resource as given.

In many applications the key question is what will hap-
pen to the stock of resource over time.

It is easy to extend the model to make it dynamic and
endogenize the stock.

The stock of fish is the state variable and we assume
that it evolves according to the equation

st+1 = st + g(st)− y(st, bt)

where g(st) is the growth of new stock with g(0) = 0,
g′ > 0, g′′ < 0.

Let the initial stock be s1.



Planner’s Problem

Consider first the planning problem of choosing the
optimal number of boats in each period.

Formally, the problem is to choose (bt)
∞
t=1 to

maximize discounted sum of surplus

max
(bt)∞t=1

∞∑
t=1

δt−1{
∫ y(st,bt)

0
p(x)dx− wbt}

s.t.st+1 = st + g(st)− y(st, bt)

where δ ∈ (0, 1) is the discount rate.

We can solve this via recursive methods (see Stokey,
Lucas and Prescott (1989)).



Think of the planner as choosing, given the current
stock is s, what he wants the future stock x to be -
this will imply what the number of boats has to be.

More precisely, define the function b(x, s) implicitly
from the equation

x = s+ g(s)− y(s, b).

If the current stock of fish is s and the planner wants
the stock next period to be x, the number of boats this
period must be b(x, s).

Note that

∂b(x, s)

∂x
= − 1

∂y(s, b)/∂b
< 0

which tells us that the higher the future stock the lower
the number of boats.



In addition,

∂b(x, s)

∂s
=

1 + g′(s)− ∂y(s, b)/∂s

∂y(s, b)/∂b
> 0

which tells us that the higher the current stock the
higher the number of boats

We can formulate the planner’s problem recursively as

max
x

∫ y(s,b(x,s))

0
p(z)dz − wb(x, s) + δV (x)

where V (x) is the planner’s value function.

The planner’s value function satisfies the functional
equation

V (s) = max
x
{
∫ y(s,b(x,s))

0
p(z)dz − wb(x, s) + δV (x)}

Denote the optimal policy function as x0(s).



The first order condition for the maximization problem
implies

δV ′(x0) =

−[p(y(s, b(x0, s)))∂y(s,b(x0,s))
∂b − w]∂b(x

0,s)
∂x

This says that

MB of additional stock =
MC (social value of lost fish consumption today)

So lets look for the planner’s steady state, i.e. a stock
s0 such that

x0(s0) = s0

The level of boats will be

b0 = b(s0, s0)



To find this, we need an expression for δV ′(x).

We know that

V (x) = max
ω
{
∫ y(x,b(ω,x))

0
p(z)dz−wb(ω, x) + δV (ω)}

Thus, by the Envelope Theorem,

V ′(x) = p(y(x, b(x0(x), x)))∂y(x,b(x0(x),x))
∂s

+{p(y(x, b(x0(x), x)))∂y(x,b(x0(x),x))
∂b − w}∂b(x

0(x),x)
∂s

The first term in the expression captures the value of
additional consumption next period while the second
term captures the induced effect on the number of
boats.

Thus, in steady state, letting p0 = p(y(s0, b0)), we
have:



δ[p0∂y(s0, b0)

∂s
+ (p0∂y(s0, b0)

∂b
− w)

∂b(s0, s0)

∂s
]

= −[p0∂y(s0, b0)

∂b
− w]

∂b(s0, s0)

∂x

This can be solved for s0.

Note that, at a steady state,

p0∂y(s0, b0)

∂b
> w.

This differs from the static model because we have to
take into account the impact of more boats on the
future stock.



Market Equilibrium

An equilibrium steady state is a price p∗, a stock s∗

and a number of boats b∗ such that:

(i) x(p∗) = y(s, b∗)

(ii) p∗(
y(s∗, b∗)

b∗
) = w

(iii) g(s∗) = y(s∗, b∗)

(i) is demand equals supply; (ii) is fishermen make
zero profits and (iii) is that the growth rate is
sufficient to replenish the stock.

An interesting question is whether there exists a steady
state with a positive stock or whether the outcome will
be extinction - see Leach on this.
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Figure 3: Stable market equilibrium on the Dynamic
Common Property model



Comparing Equilibrium and Optimum

Lets study this diagrammatically, assuming that
p∗ = 1.

Condition (iii) implies negative relation between s and
b. (Plot g(s) and y(s, b) in a diagram with s on the
horizontal axis. By varying b, we can get s
corresponding to each b.)

Condition (ii) implies positive relation between s and
b.

In s− b space, we can plot the implications of
conditions (ii) and (iii) and find the market steady
state. In the same diagram, we can put on the
planner’s steady state.

The market equilibrium will be characterized by:

i) too many boats

ii) too little stock of fish.



IV. Dynamic Optimal Taxation

Thinking through the problem of optimal taxation in
dynamic economies raises a host of interesting new is-
sues.

We will discuss:

(i) the idea of Ricardian Equivalence;

(ii) the Tax Smoothing Problem;

(iii) the Optimal Taxation of Capital;

(iv) the Problem of Time Inconsistency;

and (v) the New Dynamic Public Finance.



1. Ricardian Equivalence

Discussion of the stimulus package suggests that a
debt-financed tax cut will have positive effects on the

economy.

However, there is a tradition in macroeconomics that
argues that the timing of taxes should not matter.

This is the idea of Ricardian Equivalence, named after
the nineteenth century economist David Ricardo who

first proposed the idea.

In modern form, it was revitalized by Barro in a 1974
article in JPE “Are Government Bonds Net Wealth?”.

The idea of Ricardian Equivalence is simple: if govern-
ment spending is financed by debt, then this will have
to be paid back eventually and this means future taxes
will go up.



A citizen’s consumption path will be determined by his
life time budget constraint and he will anticipate these
higher future taxes.

Thus, a debt-financed tax cut will not alter the citizen’s
lifetime budget constraint and hence will not alter his
consumption path.

Despite the idea’s simplicity, it is worth seeing it derived
formally.

We will follow the exposition in Ljungqvist and Sargent
Chp 10.



Model

The economy consists of a single infinitely lived repre-
sentative household.

There is a single consumption good and the household
has preferences over consumption streams given by

∞∑
t=0

βtu(ct) (1)

where ct is consumption in period t, β ∈ (0, 1) is the
discount rate, and u(·) is increasing, strictly concave,
and satisfies the Inada conditions.

Each household has an endowment sequence {yt}∞t=0

with finite present value.

There is a single risk-free asset bearing a fixed gross
one period return of R > 1. We assume βR = 1.

Think of the asset as either a risk-free loan to foreigners
or the government.



There is a government with a stream of government
consumption requirements {gt}∞t=0.

The government imposes a stream of lump sum taxes
{τt}∞t=0 on the household.

The government can also borrow and lend in the asset
market.



Households

Letting bt denote the household’s ownership of the asset
at time t, the household faces the sequence of budget
constraints

ct +
bt+1

R
= yt − τt + bt. (2)

The household’s initial asset ownership b0 is given.

Note that bt < 0 when the household is borrowing.

When choosing {bt}∞t=0 the household faces the se-
quence of constraints

bt ≥ b̃t (3)

where

b̃t =

∞∑
j=0

R−j(τt+j − yt+j).



These constraints restrict the household to borrow no
more than it is feasible for it to repay.

Note that even with ct = 0 for ever, b̃t is the maximum
that the household can repay.

The household chooses a plan {ct, bt+1}∞t=0 to maxi-
mize (1) subject to (2) and (3).



Government

Letting Bt denote the amount of government debt at
time t, the government faces the budget constraint

τt +
Bt+1

R
= gt +Bt. (4)

If Bt < 0 the government is lending to the household
or foreigners.

The government’s period 0 debt B0 is given.

We rule out the government running Ponzi schemes by
imposing the transversality condition

lim
T→∞

R−TBt+T = 0.



Equilibrium

Definition: Given initial conditions (b0, B0), an equi-
librium is a household plan {ct, bt+1}∞t=0 and a govern-
ment policy {gt, τt, Bt+1}∞t=0 such that: (i) the govern-
ment plan satisfies the government budget constraint
(4), and, (ii) given {τt}∞t=0 the household’s plan is op-
timal.

Ricardian Equivalence Proposition: Given initial con-
ditions (b0, B0), let {c∗t , b∗t+1}∞t=0 and {gt, τ∗t , B∗t+1}∞t=0

be an equilibrium. Consider any other tax policy {τ ot }∞t=0

satisfying

∞∑
t=0

R−tτ∗t =
∞∑
t=0

R−tτ ot . (5)

Then, {c∗t , bot+1}∞t=0 and {gt, τ ot , Bo
t+1}∞t=0 is also an

equilibrium where

bot =
∞∑
j=0

R−j(c∗t+j + τ ot+j − yt+j) (6)



and

Bo
t =

∞∑
j=0

R−j(τ ot+j − gt+j). (7)

Proof: We first show that {c∗t , bot+1}∞t=0 solves the
household’s problem under the altered government tax
scheme {gt, τ ot , Bo

t+1}∞t=0.

In general, the household’s problem can equivalently
be posed as choosing at time 0 a consumption plan
{ct}∞t=0 to maximize (1) subject to the single present
value budget constraint

b0 =
∞∑
t=0

R−t(ct − yt) +
∞∑
t=0

R−tτt. (8)

The household’s asset holdings in each period t are then
obtained by solving forward the budget constraint (2)
to obtain

bt =

∞∑
j=0

R−j(ct+j + τt+j − yt+j). (9)



Observe that constraint (3) is satisfied since

bt =
∞∑
j=0

R−j(ct+j + τt+j − yt+j)

≥
∞∑
j=0

R−j(τt+j − yt+j) = b̃t.

Condition (5) implies that the household’s present value
budget constraint (8) is the same under {gt, τ∗t , B∗t+1}∞t=0

as under {gt, τ ot , Bo
t+1}∞t=0 and hence {c∗t }∞t=0 solves the

household’s problem.

Moreover, from (9), we see that the household’s asset
holdings are indeed given by (6).

It remains to show that the altered government tax
and borrowing plans satisfy the government’s budget
constraint (4).

In general, the government’s budget constraint (4) can
be converted into a single present value budget con-
straint



B0 =

∞∑
t=0

R−t(τt − gt). (10)

Government debt in each period is then obtained by
solving forward the budget constraint (4) to obtain

Bt =
∞∑
j=0

R−j(τt+j − gt+j). (11)

Thus, given (5), the present value of taxes is the same
under {τ∗t }∞t=0 as under {τ ot }∞t=0 and (10) is satisfied.

By (11), the adjusted borrowing plan that makes (4)
satisfied in each period is given by (7). �



Discussion

An objection to this argument is that, in reality, house-
holds are not infinitely-lived and a debt-financed tax cut
might transfer resources from future to current gener-
ations.

Barro’s paper pointed out that the same argument goes
through in an overlapping generations model provided
that generations are altruistically linked via a bequest
motive.

The key assumption is that the bequest motive is oper-
ational in the sense that bequests are always positive.

The Ricardian Equivalence Proposition remains true
provided that the initial equilibrium has an operational
bequest motive for all t and that the new tax policy
must not be so different from the initial one that it
renders the bequest motive inoperative.



Ljungqvist and Sargent Chp 10 demonstrate this in a
model with a sequence of one-period-lived agents.

In each period t there is a one-period-lived agent who
values consumption and the utility of his direct descen-
dant.

Preferences of the period t agent are

u(ct) + βV (bt+1)

where bt+1 ≥ 0 denotes bequests to the period t + 1
agent and V (bt+1) is the maximized utility function of
the period t+ 1 agent; i.e.,

V (bt+1) = max
(ct+1,bt+2)∈<2

+

{u(ct+1) + βV (bt+2)

: ct+1 +
bt+2

R
≤ y − τt+1 + bt+1}.

If the initial equilibrium does not have positive be-
quests, then timing of taxes does matter.



Suppose, for example, that the period t agent is not
leaving bequests to the period t+ 1 agent.

If the government cuts taxes in period t and finances
this by raising taxes in period t+1, the period t agent’s
consumption will increase and the period t+ 1 agent’s
consumption will decrease.

For more discussion of the idea of Ricardian Equivalence
see Barro’s paper “The Ricardian Approach to Budget
Deficits.”



2. Tax Smoothing

The Ricardian Equivalence Proposition assumes the gov-
ernment employs lump sum taxes.

If taxes are distortionary, the result is not true.

This is because the distortionary costs of taxation tend
to be convex in the tax rate.

Thus, if the government cranks up the marginal rate
of taxation on income to 100% one period and then
reduces it to 0% the next period, that would not be
equivalent to keeping the tax rate at 50% in each pe-
riod.

Given that the Ricardian Equivalence Proposition is not
valid when taxes are distortionary, the issue of how gov-
ernment should use debt and taxes to finance govern-
ment expenditure is an interesting one.



Barro (1979) JPE offers a famous analysis of this prob-
lem.

His theory makes the following assumptions:

- government spending needs vary over time

- government has available a single distortionary tax

- distortionary costs of taxation are a convex function
of the tax rate

His theory implies that the government should use bud-
get surpluses and deficits as a buffer to prevent tax rates
from changing too sharply.

Thus, the government should run a deficit in times of
high spending needs and a surplus in times of low need.



While it is normative, empirical evidence supports this
tax smoothing theory.

Historically, the debt/GDP ratio in the U.S. and U.K.
tends to have increased in periods of high spending
needs and decreased in periods of low needs.

To illustrate Barro’s tax smoothing theory, I will use a
simple tax smoothing model that is reminiscent of those
used by Lucas and Stokey JME (1983) and Aiyagari et
al JPE (2002).

This model forms the basis for my work on the politi-
cal economy of fiscal policy with Marco Battaglini (see
in particular “A Dynamic Theory of Public Spending,
Taxation and Debt” AER 2008).



The model

The economy consists of a single infinitely-lived repre-
sentative household.

There is a single (nonstorable) consumption good, z,
produced using labor, l, with the linear technology z =
wl.

There is a public good, g, produced from the consump-
tion good according to the technology g = z/p.

The houshold consumes the consumption good, bene-
fits from the public good, and supplies labor.

Each consumer’s per period utility function is

zt +Atg
α
t −

l
(1+1/ε)
t

ε+ 1
,

where α ∈ (0, 1) and ε > 0.



The parameter At measures the value of the public
good and it may vary across periods reflecting shocks
to the society such as wars.

Assume for now that the entire sequence of shocks
{At}∞t=0 is known at time 0 and also that for all t,
At ∈ [A,A].

Citizens discount future per period utilities at rate δ.

There is a competitive labor market and competitive
production of the public good.

Thus, in each period the wage rate is equal to w and
the price of the public good is p.

There is also a market in risk-free one period bonds.

The assumption of a constant marginal utility of con-
sumption implies that the equilibrium interest rate is
ρ = 1/δ − 1.

At this interest rate, consumers will be indifferent as to
their allocation of consumption across time.



Government

The public good is provided by the government.

The government can raise revenue by levying a propor-
tional tax on labor income.

It can also borrow and lend by selling and buying bonds.

Government policy in any period t is described by a
triple {τt, gt, bt}, where τt is the income tax rate; gt is
the public good; and bt is the amount of bonds sold.

When bt is negative, the government is buying bonds.

If the government sells bt bonds in period t, it must
repay (1 + ρ)bt in period t+ 1.



In a period in which government policy is {τ, g, b}, the
household will supply an amount of labor

l∗(w(1− τ)) = arg max
l
{w(1− τ)l − l(1+1/ε)

ε+ 1
}.

It is straightforward to show that

l∗(w(1− τ)) = (εw(1− τ))ε,

so that ε is the elasticity of labor supply.

If the household simply consumes his net of tax earn-
ings, he will obtain a per period utility of

u(w(1− τ), g;A) =
εε(w(1− τ))ε+1

ε+ 1
+Agα.

Since the household is indifferent as to his allocation of
consumption across time, his lifetime utility will equal
that which he would obtain if he simply consumed his
net earnings each period plus the value of his initial
bond holdings.



At the beginning of period 0, the government inherits
some amount of bonds to repay in the first period. This
debt level is denoted by b0.

Government policies must satisfy two feasibility con-
straints.

The first is that revenues must equal expenditures in
each period.

Expenditure on public goods and debt repayment in
period t is

pgt + (1 + ρ)bt−1.

Tax revenues are

R(τt) = τtwl
∗(w(1− τt)) = τtw(εw(1− τt))ε

and total revenues are

R(τt) + bt.



Thus, the government’s budget constraint in period t
is that

pgt + (1 + ρ)bt−1 = R(τt) + bt.

The second constraint is that the amount of govern-
ment borrowing must be feasible.

In particular, there is an upper limit on the amount the
government can borrow given by b = maxτ R(τ)/ρ.



The optimal taxation problem

Given the initial level of government debt b0 and the
sequence of public good values {At}∞t=0, the optimal
taxation problem is to choose a sequence of policies
{τt, gt, bt}∞t=1 to solve

max
∑∞

t=1 δ
t−1u(w(1− τt), gt;At)

s.t. pgt + (1 + ρ)bt−1 = R(τt) + bt
and bt ≤ b for all t.

Tax Smoothing Proposition The optimal policy is
such that τt = τ∗ for all t and gt = g∗(At, τ

∗) where
g∗(A, τ) satisfies

αAgα−1 = [
1− τ

1− τ(1 + ε)
]p.

The tax rate τ∗ is such that the initial level of debt
equals the present value of future budget surpluses

b0 =
∞∑
t=1

δt[R(τ∗)− pg∗(At, τ∗)]



and the debt level in period t satisfies the equation

bt =

∞∑
j=1

δj [R(τ∗)− pg∗(At+j , τ∗)].

Proof: Lets ignore the upper bound constraint on bor-
rowing for now and form the Lagrangian

L =
∑∞

t=1 δ
t−1u(w(1− τt), gt;At)∑∞

t=1 λt(R(τt) + bt − pgt − (1 + ρ)bt−1)

where λt is the multiplier on the period t budget con-
straint.

The first order conditions are

δt−1∂u(·)
∂gt

= λtp,

−δt−1∂u(·)
∂τt

= λtR
′(τt),

and
λt = (1 + ρ)λt+1.



The first condition implies that

αAtg
α−1
t =

λt
δt−1

p.

The second condition implies that

λt
δt−1

=
1− τt

1− τt(1 + ε)
.

The third condition implies that

λt+1 = δλt.

We can use these conditions to conclude that the tax
rate is constant through time; i.e., τt = τ∗ for all t.

Moreover, the public good level in each period is ad-
justed so that the social marginal benefit of public
goods is equal to the marginal cost of public funds at
the tax rate τ∗.



Thus, gt = g∗(At, τ
∗) where g∗(A, τ) is defined in the

statement of the proposition.

The sequence of government budget constraints imply
that τ∗ is such that

b0 =

∞∑
t=1

δt[R(τ∗)− pg∗(At, τ∗)]

and that

bt =
∞∑
j=1

δj [R(τ∗)− pg∗(At+j , τ∗)].

Finally, note that the constraint that bt ≤ b is satisfied
in each period since

bt =
∞∑
j=1

δj [R(τ∗)− pg∗(At+j , τ∗)]

<
∞∑
j=1

δjR(τ∗)

≤ max
τ

R(τ)/ρ

This completes the proof. �



Note from the expressions in the proposition (and the
government’s period t budget constraint) that

bt −
bt−1

δ
= pg∗(At, τ

∗)−R(τ∗)

Thus, debt increases when At is high and decreases
when At is low.



Stochastic Shocks

As in the model just considered, Barro’s analysis as-
sumed that spending needs were variable, but that the
government had perfect foresight.

He conjectured what would happen with stochastic shocks.

The same principle should apply: in particular, he con-
jectured that taxes should obey a martingale; that is,
τt = Eτt+1.

Aiyagari et al (2002) study an infinite horizon, gen-
eral equilibrium version of Barro’s model with stochas-
tic shocks.

They show that the tax smoothing logic does not nec-
essarily imply a counter-cyclical theory of deficits and
surpluses.



The optimal policy may be for the government to grad-
ually acquire sufficient bond holdings to finance spend-
ing completely from interest earnings.

Excess interest earnings are rebated back to households
via a cash transfer.

Taxes do not obey a martingale: they obey a super-
martingale τt > Eτt+1.

I will now illustrate these points by extending the model
just analyzed to incorporate stochastic shocks in the
value of the public good.



The extended model

Assume now that the value of the public good varies
across periods in a random way.

Specifically, in each period, A is the realization of a
random variable with range [A,A] and cumulative dis-
tribution function G(A).

Also assume that the government can also provide the
household with a non-negative cash transfer denoted st
(this allows government to rebate excess revenues back
to households).

It is convenient to let

B(τt, gt, bt; bt−1) = R(τt)− pgt + bt − (1 + ρ)bt−1.

We refer to B as the net of transfer surplus.

The government budget constraint can now be written
as

st ≤ B(τt, gt, bt; bt−1).



The optimal taxation problem

Given the initial level of government debt b0, the opti-
mal taxation problem is to choose a sequence of con-
tingency plans {τt(·), gt(·), bt(·), st(·)}∞t=1 to maximize
the representative consumer’s expected utility

(1 + ρ)b0 + E

∞∑
t=1

δt−1[u(w(1− τt), gt;At) + st],

subject to the sequence of feasibility constraints

st ∈ [0, B(τt, gt, bt; bt−1)] and bt ≤ b for all t.

If in any period t the net of transfer surplus
B(τt, gt, bt; bt−1) were positive, the government would
use it to finance transfers and hence

st = B(τt, gt, bt; bt−1).

Thus, we can rewrite the government’s problem as choos-
ing a sequence of contingent tax rate-public good-public



debt plans {τt(·), gt(·), bt(·)}∞t=1 to solve

maxE
∑∞

t=1 δ
t−1[u(w(1− τt), gt;At)

+B(τt, gt, bt; bt−1)]
s.t. B(τt, gt, bt; bt−1) ≥ 0

and bt ≤ b for all t.

This problem can be formulated recursively.

Let v(b, A) denote the maximized value of the objective
function when the initial level of debt is b and the value
of the public good is A.

Then,

v(b, A) = max(τ,g,b′){u(w(1− τ), g;A) +B(τ, g, b′; b)

+δEv(b′, A′) : B(τ, g, b′; b) ≥ 0 & b′ ≤ b}.

Standard arguments can be applied to show that such a
value function exists and that Ev(·, A) is differentiable
and strictly concave.

From this, the properties of the optimal policies may
be deduced.



The optimal policies

Let (b, A) be given. Letting λ denote the multiplier on
the budget constraint, the first order conditions for the
problem are:

1 + λ =
1− τ

1− τ(1 + ε)
,

αAgα−1 = [
1− τ

1− τ(1 + ε)
]p,

and
1− τ

1− τ(1 + ε)
= −δE[

∂v(b′, A′)

∂b′
].

To interpret these, recall that (1 − τ)/(1 − τ(1 + ε))
measures the cost of raising a $1 of tax revenue via a
tax hike.

The first condition says that the benefit of raising an
additional unit of revenue - measured by 1 + λ - must
equal the marginal cost of taxation.



The second condition says that the marginal social ben-
efit of the public good must equal its price times the
marginal cost of taxation.

This is the Samuelson Rule modified to take into ac-
count the fact that taxation is distortionary.

The third condition says that the benefit of increasing
debt in terms of reducing taxes must equal the marginal
cost of an increase in the debt level.

There are two possibilities:

(i) at the optimal policy (τ, g, b′) the government is
providing a transfer (i.e., B(τ, g, b′; b) > 0) so that
λ = 0

(ii) at the optimal policy (τ, g, b′) the government is
not providing a transfer so that λ > 0.



Case (i)

The first condition implies that τ = 0.

If B(τ, g, b′; b) > 0 and τ > 0 the government could
reduce taxes and make up the lost revenue by
reducing transfers: because taxes are distortionary,
this would raise welfare.

The second condition implies that g = gS(A), where
gS(A) satisfies the Samuelson Rule.

If B(τ, g, b′; b) > 0, then extra units of the public
good can be financed in a non-distortionary way by
reducing transfers.

The third condition implies that b′ = b∗ where

1 = −δE[
∂v(b∗, A′)

∂b′
] .



Intuitively, the marginal benefit of borrowing an addi-
tional unit is just 1 because the effect will be to just
increase the transfer.

In this case, the size of the transfer is

B(0, gS(A), b∗; b).



Case (ii)

In case (ii), the constraint is binding at the optimal
policy.

The optimal policy is implicitly defined by the second
and third conditions and the budget constraint

B(τ, g, b′; b) = 0.

The tax rate is positive and the optimal level of public
good reflects the fact that spending is financed by
distortionary taxation.

The optimal level of borrowing reflects the fact that
borrowing an additional unit means that we can reduce
distortionary taxation.



When will we be in each case?

Case (i) arises when the triple (0, gS(A), b∗) satisfies
the constraint that B(0, gS(A), b∗; b) > 0.

Defining the function A∗(b, b∗) from the equality

B(0, gS(A), b∗; b) = 0,

· if A < A∗(b, b∗), we are in case (i)

· if A > A∗(b, b∗), we are in case (ii)

When A > A∗(b, b∗), the tax rate-public good-public
debt triple is such that τ > 0, b′ > b∗ and g < gS(A).



The debt level b∗

Further progress can be made by characterizing the
debt level b∗.

To do this, we need to compute the derivative of the
value function.

If A > A∗(b, b∗)

v(b′, A) = max
{τ,g,z}


u(w(1− τ), g;A) +B(τ, g, z; b′)

+δEv(z,A′)

: B(τ, g, z; b′) ≥ 0 & z ≤ b


while if A < A∗(b, b∗)

v(b′, A) = u(w, gS(A);A) +B(0, gS(A), b∗; b′)

+δEv(b∗, A′).

Using the Envelope Theorem, we have that

∂v(b′, A)

∂b′
=

{
− 1−τ(b′,A)

1−τ(b′,A)(1+ε)(1 + ρ) if A > A∗(b′, b∗)

−(1 + ρ) if A < A∗(b′, b∗)



where τ(b′, A) is the optimal tax rate.

Thus, the expected marginal cost of debt is

−δE[∂v(b′,A)
∂b′ ] = G(A∗(b′, b∗))

+
∫ A
A∗(b′,b∗)(

1−τ(b′,A)
1−τ(b′,A)(1+ε))dG(A)

Combining this with our first order condition, the debt
level b∗ must satisfy

1 = G(A∗(b∗, b∗))+

∫ A

A∗(b∗,b∗)

1− τ(b∗, A)

1− τ(b∗, A)(1 + ε)
dG(A)

Since τ(b∗, A) exceeds 0 for all A > A∗(b∗, b∗), this
requires that A∗(b∗, b∗) = A.

From the definition of A∗(b∗, b∗), this in turn implies
that

b∗ = b ≡ −pgS(A)/ρ



At this debt level, the government’s interest earnings
on its bond holdings are always sufficient to finance
the Samuelson level of public goods, implying that no
taxation is necessary.



Summary

The optimal policy has the following form.

When the state (b, A) is such that A < A∗(b, b), the
tax rate is zero, the public good level is the Samuelson
level and the debt level is b.

Surplus revenues (positive if A < A∗(b, b)) are redis-
tributed to citizens via a transfer.

When the state (b, A) is such that A > A∗(b, b), the op-
timal policy involves positive levels of taxation, a public
good level below the Samuelson level and a debt level
that exceeds b.

There are no surplus revenues and hence no transfer.



Dynamics

The optimal policies determine a distribution of public
debt levels in each period.

In the long run, this sequence of debt distributions con-
verges to the distribution that puts point mass on the
debt level b.

To understand this, first note that since A∗(b, b) = A,
it is clear that once the planner has accumulated a level
of bonds equal to −b, he will maintain it.

On the other hand, when the planner has bond holdings
less than −b then he must anticipate using distortionary
taxation in the future.

To smooth taxes he has an incentive to acquire addi-
tional bonds when the value of the public good is low
in the current period.



This leads to an upward drift in government bond hold-
ings over time.

Pulling all this together, we have the following propo-
sition.

Asset Accumulation Proposition The optimal poli-
cies converge to a steady state in which the debt level
is b, the tax rate is 0, the public good level is gS(A),
and citizens receive ρ(−b)− pgS(A) in transfers.



Discussion

This result illustrates an interesting feature of optimal
fiscal policy in a world with stochastic shocks: basically,
the government may accumulate sufficient assets to be
totally self-reliant.

Notice, however, that when we introduced stochastic
shocks we did not change our assumptions about the
structure of the bond market.

In particular, we are not allowing a market in state-
contingent bonds.

Thus, we are in a world of incomplete markets.

With state-contingent debt available, the government
optimally smooths taxes and relies on state contingent
debt to deal with spending fluctuations (see Ljungvist
and Sargent Recursive Macroeconomic Theory Chp 15
for an exposition).



Taxes are positive and constant just like in the case
with perfect foresight.

However, it is not clear how realistic state contingent
debt is.

Thus, when viewed as a positive model, the “predic-
tion” embodied in the Proposition is not very appeal-
ing.

One way to avoid the absorbing state in which b = b is
to assume that the government faces what Aiyagari et
al. call “ad hoc” constraints on asset accumulation.

If the government is not allowed to accumulate more
bonds than, say, −z where z ∈ (b, 0), then even in the
long run the optimal debt level will fluctuate and taxes
will be positive at least some of the time.



This is because, by definition of b, even when the gov-
ernment has accumulated −z in bonds he can not fi-
nance the Samuelson level of public goods from the
interest earnings when A is very high.

In these high realizations, it will be optimal to finance
additional public good provision by a combination of
levying taxes and reducing bond holdings.

Reducing bond holdings temporarily allows the govern-
ment to smooth taxes.

The dynamic pattern of debt suggested by Barro is cre-
ated by the rebuilding of bond holdings in future periods
when A is low.

However, the difficulty with this resolution of the prob-
lem is obvious: why should the government be so con-
strained and, if it is, what should determine the level
z?



3. The Optimal Taxation of Capital

The tax smoothing model just has labor income taxes.

We now discuss optimal taxation when the government
can tax both labor and capital income.

The government has an exogenous revenue requirement
in each period and can levy linear taxes on labor and
capital income.

The government can commit to a path of labor and
capital income taxes at time zero and the question is
what is the optimal path of such taxes.

This problem is known as the Ramsey Problem, follow-
ing Ramsey (1927).

The main issue is whether taxing capital income is a
good idea.



Let’s start with a simple model to review the issues
concerning capital income taxation.

Consider an individual who lives for two periods, earns
labor income y in period 1 and saves to consume in
period 2.

Suppose the interest rate is r and that the government
taxes labor income at rate t and income from savings
at rate τ .

The individual’s problem is

maxU(y(1− t)− s, s(1 + r(1− τ)))
s.t. s ∈ [0, y(1− t)]

or, equivalently,

maxU(C1, C2)
s.t. C1 + 1

1+r(1−τ)C2 ≤ y(1− t)



The first order condition is

∂U(C1, C2)/∂C1

∂U(C1, C2)/∂C2
= 1 + r(1− τ)

From this equation, we can see that taxing the income
from savings distorts the inter-temporal allocation of
consumption, by making future consumption more ex-
pensive.

Using second best logic, perhaps creating a distortion
in the intertemporal allocation of consumption may be
optimal given that we are already distorting labor supply
by taxing income.

Thus, (assuming that he only works in period 1) the
individual’s problem is actually

maxU(C1, C2, l)
s.t. C1 + 1

1+r(1−τ)C2 ≤ wl(1− t)

and we have to worry about the distortion in l.



Interpreting C1 and C2 as different consumption goods,
this looks analogous to the Corlett-Hague problem with
two consumder goods.

Applying their result suggests that we should deviate
from uniform taxation only when there is a difference
in

More generally, the results from the Optimal mixed tax-
ation literature suggest that if we can write utility as

U(C1, C2, l) = V (h(C1, C2), l),

it will not be optimal to distort the allocation of con-
sumption across time by taxing the income from sav-
ings.

Nonetheless, this does not close the matter because
this analysis does not take into account the dynamic
equilibrium effects of saving on the capital stock and
hence the rate of interest and the wage rate.



Thus, there is a need to embed the choice of taxes into
a genuine dynamic general equilibrium model.

This was done in a famous paper by Chamley (1986)
Econometrica.

Our exposition will follow Ljungvist and Sargent Recur-
sive Macroeconomic Theory Chp 15 (See also the paper
by Atkeson, Chari, and Kehoe on the reading list.)



The Model

Consider a production economy populated by a large
number of identical, infinitely-lived, consumers.

Time periods are indexed by t = 0, 1, .....,∞

Consumers enjoy consumption and lesiure, with prefer-
ences given by

∞∑
t=0

βtu(ct, lt), (1)

where β is the discount factor and u is increasing in
c and l, strictly concave and satisfies the Inada condi-
tions.

Each consumer is endowed with one unit of time that
can be used for leisure lt and labor nt:

lt + nt = 1 (2)



A constant returns to scale production technology trans-
forms capital kt and labor nt into output via the pro-
duction function F (kt, nt).

The production function satisfies the standard Inada
conditions.

Output can be used for private consumption ct, gov-
ernment consumption gt, and new capital kt+1.

Government consumption is exogenously specified and
constant so that gt = g.

Feasibility requires that

ct + g + kt+1 = F (kt, nt) + (1− δ)kt, (3)

where δ is the depreciation rate on capital.



The Government

Government consumption is financed by proportional
taxes on capital and labor income τkt and τnt .

The government can also trade one-period bonds. Let
bt be government indebtedness to the private sector
(denominated in time t goods) at the beginning of pe-
riod t.

The government’s budget constraint in period t is

g = τkt rtkt + τnt wtnt +
bt+1

Rt
− bt (4)

where rt and wt are the market determined rental rate
of capital and the wage rate for labor (denominated
in time t-goods) and Rt is the gross rate of return on
one-period bonds held from t to t+ 1.

Interest earnings on bonds are tax exempt.



Consumers

The consumer chooses a sequence (ct, lt, kt+1, bt+1)∞t=0

to maximize (1) subject to the following sequence of
budget constraints:

ct + kt+1 + bt+1

Rt
= (1− τnt )wtnt + (1− τkt )rtkt

+(1− δ)kt + bt
(5)

and given initial holdings of capital k0 and bonds b0.

With βtλt as the Lagrange multiplier on the time t
budget constraint, the first order conditions are:

uc(t) = λt (6)

ul(t) = λt(1− τnt )wt (7)

λt = βλt+1[(1− τkt+1)rt+1 + 1− δ] (8)

λt
1

Rt
= βλt+1 (9)



Substituting (6) into (7) and (8), we obtain

ul(t) = uc(t)(1− τnt )wt (10)

and

uc(t) = βuc(t+ 1)[(1− τkt+1)rt+1 + 1− δ]. (11)

Moreover, equations (8) and (9) imply that

Rt = (1− τkt+1)rt+1 + 1− δ. (12)

This is a no-arbitrage condition ensuring that bonds
and capital have the same rate of return.

Note that we can iterate on the consumer’s budget con-
straints to write a single present-value constraint (see
Ljungvist and Sargent)

∞∑
t=0

(Πt−1
i=0

1

Ri
)ct =

∞∑
t=0

(Πt−1
i=0

1

Ri
)(1− τnt )ntwt

+[(1− τk0 )r0 + 1− δ]k0 + b0

(13)



Firms

In each period, firms maximize profits

F (kt, nt)− wtnt − rtkt (14)

Firms’ first order conditions are

rt = Fk(kt, nt) (15)

and
wt = Fn(kt, nt) (16)



The Ramsey Problem

Let c = (ct)
∞
t=0, l = (lt)

∞
t=0, etc

Definition 1: A feasible allocation is a sequence (k, c, l, g)
that satisfies (3) for all t

Definition 2: A price system is a 3-tuple of nonnega-
tive bounded sequences (w, r,R)

Definition 3: A government policy is a 4-tuple of se-
quences (g, τk, τn, b)

Definition 4: A competitive equilibrium is a feasible al-
location, a price system, and a government policy such
that (a) given the price system and the government pol-
icy, the allocation solves both the firms’ problem and
the consumers’ problem; and (b) given the allocation
and the price system, the government policy satisfies
the sequence of government budget constraints (4).



There are many competitive equilibria, indexed by dif-
ferent government policies. This multiplicity motivates
the Ramsey problem.

Definition 5: Given k0 and b0, the Ramsey problem
is to choose a competitive equilibrium that maximizes
(1).

For reasons that will become clear, assume that the
initial capital tax τk0 is fixed exogenously.



Zero Capital Income Tax

We can formulate the Ramsey problem as if the govern-
ment chooses the after-tax rental rate of capital r̃t =
(1−τkt )rt and the after-tax wage rate w̃t = (1−τnt )rt.

Using (15), (16), we can express government revenues
as

τkt rtkt + τnt wtnt = (rt − r̃t)kt + (wt − w̃t)nt
= Fk(t)kt + Fn(t)nt − r̃tkt − w̃tnt
= F (kt, nt)− r̃tkt − w̃tnt

Substituting this into (4), we can write the government
budget constraint

g = F (kt, nt)− r̃tkt − w̃tnt +
bt+1

Rt
− bt



The Ramsey problem in Lagrangian form can be written
as

L =
∞∑
t=0

βt{u(ct, 1− nt)

+Ψt[F (kt, nt)− r̃tkt − w̃tnt + bt+1

Rt
− bt]

+θt[F (kt, nt) + (1− δ)kt − ct − g − kt+1]
+µ1t[ul(t)− uc(t)w̃t]

+µ2t[uc(t)− βuc(t+ 1)(r̃t+1 + 1− δ)]}

(17)

where Rt = r̃t+1 + 1− δ as given by (12).

The choice variables are {(kt+1, ct, nt, bt+1, r̃t, w̃t)}∞t=0.

Note that the household’s budget constraint is not ex-
plicitly included because it is redundant when the gov-
ernment satisfies its budget constraint and the resource
constraint holds.

The first order condition with respect to kt+1 is

θt = β{Ψt+1[Fk(t+ 1)− r̃t+1]+
θt+1[Fk(t+ 1) + 1− δ]} (18)



The term θt on the left hand side measures the marginal
cost of investing more in capital at time t.

The right hand side measures the marginal benefit: the
first term the increase in tax revenues and the second
term the increase in output.

We can now establish:

Proposition 1 If the solution to the Ramsey problem
converges to a steady state, then in the steady state,
the tax rate on capital income is zero.

Proof: In a steady state, all endogenous variables re-
main constant. Using (15), the steady state version of
(18) is

θ = β{Ψ[r − r̃] + θ[r + 1− δ]} (19)

The steady state version of (11) is

1 = β(r̃ + 1− δ). (20)



Substituting (20) into (19) yields

(θ + Ψ)(r − r̃) = 0 (21)

�

Intuition: taxing capital income in period t+1 is equiv-
alent to taxing consumption at a higher rate in period
t+ 1 than in period t.

Thus, a positive tax on capital income is equivalent to
an ever-increasing tax on consumption.

Note here that we do not prove that the solution to
the Ramsey problem necessarily converges to a steady
state.



Primal Approach to the Ramsey Problem

In the Lagrangian formulation in (17), we reduced a
pair of tax rates (τkt , τ

n
t ) and a pair of prices (rt, wt)

to just one pair of numbers (r̃t, w̃t) by utilizing the
firms’ first order conditions and equilibrium outcomes
in factor markets.

In fact, we can eliminate all prices and taxes and think
of the government directly choosing a feasible alloca-
tion, subject to constraints that ensure the existence
of prices and taxes such that the chosen allocation is
consistent with agents’ optimization.

This is known as the Primal approach and is the stan-
dard way of solving this type of problem.

We begin with the consumer’s budget constraint in
present value terms (13)

∞∑
t=0

q0
t ct =

∞∑
t=0

q0
t (1− τnt )wtnt

+[(1− τk0 )r0 + 1− δ]k0 + b0

(22)



where for t ≥ 1

q0
t = (Πt−1

i=0

1

Ri
) (23)

is the period 0 price of consumption in period t. We
set q0

0 = 1.

We then use the consumer’s first order conditions to
replace the prices q0

t and (1−τnt )wt with the consumer’s
marginal rates of substitution.

A stepwise summary of the primal approach is as fol-
lows:

STEP 1. Obtain the first order conditions of the con-
sumer and firm problems, as well as any arbitrage pric-
ing conditions. Solve these conditions for {q0

t , rt, wt, τ
k
t ,

τnt }∞t=0 as functions of the allocation {(ct, nt, kt+1)}∞t=0.

STEP 2. Substitute these expressions for taxes and
prices into the consumer’s present value budget con-
straint. This gives an intertemporal constraint involv-
ing only the allocation.



STEP 3. Solve for the Ramsey allocation by maximizing
(1) subject to (3) and the “implementability condition”
derived in Step 2.

STEP 4. After the Ramsey allocation is solved for, use
the formulas from step 1 to find taxes and prices.

We now carry out these steps.

STEP 1

Letting λ be the Lagrange multiplier on the consumer’s
present value budget constraint (22), the first order
conditions for the consumer’s problem of maximizing
(1) subject to (22) are given by:

βtuc(t) = λq0
t (24)

and
βtul(t) = λq0

t (1− τnt )wt (25)



These imply that

q0
t = βt

uc(t)

uc(0)
(26)

and

(1− τnt )wt =
ul(t)

uc(t)
(27)

The arbitrage condition (12) implies that

q0
t

q0
t+1

= (1− τkt+1)rt+1 + 1− δ (28)

Firms first order conditions and factor market equilib-
rium imply (15) and (16)

STEP 2

Substitute equations (26), (27) and r0 = Fk(0) into
(22), so that we can write the consumer’s present value
budget constraint as

∞∑
t=0

βt[uc(t)ct − ul(t)nt]−A = 0 (29)



where

A = A(c0, n0, τ
k
0 )

= uc(0){[(1− τk0 )Fk(0) + 1− δ]k0 + b0}
(30)

STEP 3

The Ramsey problem is to maximize (1) subject to (29)
and the sequence of feasibility constraints (3).

Let Φ be the Lagrange multiplier on (29) and define

V (ct, nt,Φ) = u(ct, 1− nt) + Φ(uc(t)ct − ul(t)nt).
(31)

Form the Lagrangian

L =
∞∑
t=0

βt{V (ct, nt,Φ)

+θt[F (kt, nt) + (1− δ)kt − ct − g − kt+1]}
−ΦA(c0, n0, τ

k
0 ),

(32)

where {(θt)}∞t=0 are a sequence of Lagrange multipliers
on the feasibility constraints.



The choice variables are {(ct, nt, kt+1)}∞t=0

The first order conditions for this problem imply that
for all t ≥ 1

Vc(t) = βVc(t+ 1)(1− δ + Fk(t+ 1)), (33)

and
Vn(t) = −Vc(t)Fn(t). (34)

In addition,

Vc(0)− ΦAc = βVc(1)(1− δ + Fk(1)) (35)

and
Vn(0) = [ΦAc − Vc(0)]Fn(0) + ΦAn (36)

We seek an allocation {(ct, nt, kt+1)}∞t=0 and a multi-
plier Φ that satisfies the system of difference equations
formed by these four equations, (29) and the sequence
of feasibility constraints (3).



STEP 4

After such an allocation has been found obtain q0
t from

equation (26), rt from equation (15), wt from equation
(16), τnt from equation (27), and τkt from equation
(28).



Results from Primal Approach

Observe that if the term

Vc(t)

uc(t)
=
uc(t) + Φ(ucc(t)ct + uc(t)− ulc(t)nt).

uc(t)

has the same value in periods t and t + 1 (for t ≥ 1),
then the capital income tax in period t+ 1 is zero.

To see this note that if

Vc(t)

uc(t)
=
Vc(t+ 1)

uc(t+ 1)

then (33) can be written as

uc(t) = βuc(t+ 1)(1− δ + Fk(t+ 1)).

From (26) we have that

q0t
q0t+1

= uc(t)
βuc(t+1)

= (1− δ + Fk(t+ 1))



Thus, from (28), we have that

(1− τkt+1)rt+1 = Fk(t+ 1)

which implies that τkt+1 = 0.

We can therefore establish Proposition 1 by simply not-
ing that if the solution to the Ramsey problem con-
verges to a steady state then

Vc(t)

uc(t)
=
Vc(t+ 1)

uc(t+ 1)
.

We can also establish a stronger result. Consider the
class of utility functions

U(c, l) =
c1−σ

1− σ
+ V (l) (37)

where σ ≤ 1.

Proposition 2: For utility functions of the form (37),
the optimal income tax in period t is zero for all t ≥ 2.



Proof: For a utility function of the form (37) it is the
case that

Vc(t)

uc(t)
= 1 + Φ(1− σ)

�

The zero capital income tax result is also robust to a
number of extensions. See Atkeson, Chari and Kehoe
for discussion.



The period 0 capital income tax rate

We assumed earlier that the period 0 capital income
tax rate was fixed.

What would happen if this assumption were not satis-
fied?

Note that

∂L

∂τk0
= −ΦAτ = Φuc(0)Fk(0)k0,

which is strictly positive as long as Φ > 0.

The condition implies that, if there were no restraint,
the optimal capital income tax in period 0 should be
large enough so that Φ = 0.

When Φ = 0, the solution to the Ramsey problem is
first best efficient implying that the government is im-
posing no distortionary taxation.



Thus, if there is no restriction on the period 0 cap-
ital income tax rate, the government should raise all
revenues through a time 0 capital levy, then lend the
proceeds to the private sector and finance government
spending from the interest earnings.

All future taxes would be set equal to zero.

This is why it is necessary to impose the requirement
that the period capital income tax rate is fixed.

The problem of optimal taxation just considered has
been extended in a variety of ways, notably by incorpo-
rating productivity and preference shocks.

See Chari and Kehoe’s survey article for more informa-
tion.



4. The Problem of Time Inconsistency

Suppose that the government determines the solution
to the Ramsey problem at time 0.

Suppose that at some future period t, the government
asks whether it is wise to continue with the optimal
solution.

To reevaluate, they resolve the Ramsey problem but
from period t onwards.

If the new solution coincides with the original solution
for all periods t, then the solution is time consistent.

If not, then the original solution is time inconsistent.

The solution to the Ramsey problem just analyzed is
time inconsistent.



The government would like to increase the capital in-
come tax at time t because capital is sunk at time t.

In this way, it could finance government spending with
no deadweight loss.

Kydland and Prescott (1977) pointed out that the prob-
lem of time inconsistency arises in many models of
policy-making.

There are numerous examples; for example, the govern-
ment would like to commit ex ante not to pay terrorists
to release hostages, but once hostages have been cap-
tured, it would change it mind.

When optimal policies are time inconsistent, it is not
clear why the government would not change policies
when the future date arises.



Since governments do not have any obvious way to
commit themselves, it is not clear that the lessons of
dynamic optimal taxation have any predictive content.

Moreover, if governments can in fact not commit to
following a pre announced policy plan, then assuming
they can is perhaps not the most sensible approach to
providing policy advice.

This raises the question of what will dynamic taxation
look like when governments cannot commit?

This is a complex problem as it gives rise to a repeated
game between government and the citizens.

The government must in each period be choosing pol-
icy optimally given the state of the economy (i.e., the
level of capital) and the citizens when choosing their
savings must anticipate how government will choose
future policy.



While this is closer to a question in political econ-
omy than to a normative question, sometimes thinking
through the implications of lack of commitment can
help identify good policies.

There are two basic approaches to modelling policy
choice when governments cannot commit.

1. Reputational Approach - this explores the possibility
that reputation can substitute for a commitment tech-
nology when governments choose sequentially.

The basic idea is that each period the government
makes policy choices whose consequences include a cur-
rent period return and a reputation to pass on to the
next period.

Under rational expectations, any reputation that the
government carries into next period must be one that
it will want to confirm.



The literature adapts ideas from the literature on re-
peated games so that they can be applied to contexts in
which a single agent (the government) behaves strate-
gically and the remaining agents behavior (i.e., the cit-
izens) can be summarized as a competitive equilibrium
that responds nonstrategically to government’s choices.

2. Markov Approach - this approach focuses on the
Markov-perfect equilibria of the game between govern-
ment and its citizens; i.e., government’s choices in any
period can only depend on the state of the economy in
that period.



We will illustrate the Reputational Approach by go-
ing through the paper of Chari “Time Consistency and
Optimal Policy Design” and the Markov approach by
going through a paper by Per Krusell entitled “Time-
Consistent Redistribution”.

The purpose of both these papers is expositional.

The models are just designed to be the simplest possible
models to think through the issues.

Thus, their purpose is simply to illustrate a method
rather than to derive any significant normative lessons
or make any positive predictions.



Chari’s Model

Static Version

The economy consists of a large number of identical
consumers and a government.

Consumers make decisions at two distinct points in
time, the first and second stage.

At the first stage, consumers are endowed with w units
of a consumption good from which they consume c1

units and store k units.

If they store k units, they get back Rk units in the
second stage.

In addition, consumers can work at the second stage.

If they work l units, they obtain l units of output.



The government requires G units of output in the sec-
ond stage.

It raises revenues from taxes on capital and labor.

The capital tax is δ and the labor tax is τ .

Thus, a consumer’s second stage income is

Rk(1− δ) + l(1− τ).

Each consumer’s utility is U(c1 + c2, l).

The consumer’s problem is

max(c1,c2,l,k) U(c1 + c2, l)

s.t. c1 + k = w
c2 = Rk(1− δ) + l(1− τ)

Note that, since c1 and c2 are perfect substitutes, the
solution is for the consumer to set k = w if R(1−δ) ≥ 1
and k = 0 if R(1− δ) < 1.

The government’s budget constraint is

G = δRk + τ l.



Policy-making with commitment

With commitment, the government can choose poli-
cies π = (δ, τ) before consumers make their first stage
choices and stick with these policies.

Consumers choose their optimal plan (c1, c2, l, k) given
π.

Let (c1(π), c2(π), l(π), k(π)) denote this optimal plan.

The government then solves

maxπ U(c1(π) + c2(π), l(π))
s.t. G = δRk(π) + τ l(π).

This corresponds to the Ramsey problem that we have
just discussed.

The optimal policy is very easy to describe.



The government sets δ so that R(1− δ) = 1 and then
determines τ from the constraint

G = δRw + τ l(δ, τ).

Let πo = (δo, τ o) denote the optimal policies with com-
mitment.



Policy-making without commitment

If the government cannot commit, then it is effectively
choosing the policies after the consumers have made
their first stage choices.

It is clear that after the consumers have made their first
stage choices, the optimal choice of capital tax for the
government is 1 if k > 0.

A sustainable equilibrium consists of a first stage de-
cision by consumers, a government policy, and a sec-
ond stage consumer decision function such that i) con-
sumers’ decisions are optimal in each stage and ii) the
government policy maximizes the government’s objec-
tive function.

What does a sustainable equilibrium look like?

In a sustainable equilibrium, the first stage decision of
consumers is (c1, k) = (w, 0);



The second stage consumer decision function is

l(δ, τ) = arg maxl U(w + l(1− τ), l)
c2(δ, τ) = l(τ)(1− τ)

;

and the government policy is (δ, τ) = (1, τ∗) where

τ∗l(τ∗) = G.

Thus, consumers save nothing, the government taxes
capital at 100% and all revenues are raised by the labor
tax.

Note that the government’s utility is strictly higher with
commitment - the reason is that it could have cho-
sen the policy (δ, τ) = (1, τ∗) but it did not; that is,
(δo, τ o) 6= (1, τ∗).

The difficulty arises not because the government is not
benevolent - it is at all times maximizing consumer wel-
fare.

Rather the difficulty is that the government cannot
commit not to change its policies when it sees an op-
portunity to raise consumer welfare.



Infinite period version

Imagine that this simple game was repeated for an in-
finite number of periods.

Assume no commitment so that, in each period t, con-
sumers make their first stage decisions, then the gov-
ernment sets current tax rates, and then consumers
make their second stage decisions.

How is a sustainable equilibrium defined in such a world?

Let Ht−1 be the history of all government policies up
to an including time t− 1; that is,

Ht−1 = (πs)
t−1
s=0.

Consider the problem of a consumer at the first stage
of some period t.



The consumer must choose a first stage allocation
(c1t(Ht−1), kt(Ht−1)) and a contingency plan for set-
ting future actions for all possible future histories.

After the first stage consumer decisions have been made,
the government, faced with history Ht−1 sets time t tax
rates πt(Ht−1) and chooses a contingency plan for set-
ting all future tax rates for all possible future histories.

At the second stage of period t, the history is now Ht =
(Ht−1, πt(Ht−1)) and consumers choose a second stage
allocation (c2t(Ht), lt(Ht)) and a contingency plan for
setting all future actions for all future possible histories.

More formally, in the first stage of period t the con-
sumer’s problem is to choose a contingency plan de-
fined to be a sequence of allocation rules

(c1s(Hs−1), kt(Hs−1), c2s(Hs), ls(Hs))
∞
s=t,



to solve

max
∑∞

s=t β
sU(c1s + c2s, ls)

s.t. c1s + ks = w ∀s
c2s = Rks(1− δs(Hs−1)) + ls(1− τs(Hs−1))∀s

(1)

The histories in (1) are induced by the government’s
policy rules (πs(Hs−1))∞s=t.

For example, at the first stage of period t, consumers
believe that the history the government confronts in
period t+ 1 will be given by (Ht−1, πt(Ht−1)).

The period t+ 1 policy will then be given by

πt+1(Ht−1, πt(Ht−1)),

etc.



After the first stage consumer decisions have been made
in period t, the governments’ problem is to choose a
policy plan defined to be a sequence of policy rules

(πs(Hs−1))∞s=t

to maximize

max
∞∑
s=t

βsU(c1s(Hs−1) + c2s(Hs), ls(Hs))

s.t. g ≤ δs(Hs−1)Rks(Hs−1) + τs(Hs−1)ls(Hs)

(2)

where the histories are induced from Ht−1 by the chosen
policies.



Sustainable Equilibrium

A sustainable equilibrium is a policy plan for the gov-
ernment and contingency plans for consumers such that
for every history, the following conditions are met:

i) consumers’ contingency plans solve (1) given the pol-
icy plan.

ii) given consumer’s contingency plans, the government’s
policy plan solves (2).

Note that consumers take the evolution of future his-
tories as unaffected by their actions and, in this sense,
behave competitively.

The government recognizes the effect of its policies on
the histories and thus on the decisions of consumers
and, in this sense, does not behave competitively.



Results

The set of sustainable outcomes are characterized in
the paper “Sustainable Plans” by Chari and Kehoe in
JPE 1990.

The worst sustainable equilibrium is an infinite repeti-
tion of the static sustainable equilibrium.

With sufficiently little discounting (high β), the Ramsey
policies are sustainable.

The plans supporting such outcomes specify that the
government should follow Ramsey policies as long as
these policies have been followed in the past.

Consumers’ contingency plans specify that for such his-
tories, they should save their entire endowments.

If the government has ever deviated from the Ramsey
policies, consumers’ plans specify that they save noth-
ing.

Given such plans, the government chooses optimally to
continue the Ramsey policies in each period.



Krusell’s Model

There are an infinite number of periods indexed by t

There are two classes of citizen: workers and capitalists
and firms with CRS production technologies.

Workers supply labor and capitalists supply capital.

The government taxes production and uses the rev-
enues to finance a transfer to workers.

Workers

Workers supply 1 unit of labor inelastically in each pe-
riod.

They consume their wage wt and their government
transfer Tt - they do not save.



Their lifetime utility is

∞∑
t=0

βtu(cwt)

where
cwt = wt + Tt.

Capitalists

Capitalists save and consume but do not work.

They choose {cct, kt+1}∞t=0 to maximize

∞∑
t=0

βtv(cct)

s.t. cct + kt+1 = (1− δ + rt)kt

where k0 is given.

rt is the rental rate on capital and δ the depreciation
rate.



u and v have all the usual properties and β ∈ (0, 1).

Firms

Firms choose (kt, lt) to solve

(1− τt)F (kt, lt)− wtlt − rtkt

where F has all the usual properties and τt is the tax
rate on production.

Prices and Constraints

The feasibility constraint in period t is

cwt + cct + kt+1 = F (kt, 1) + (1− δ)kt.

The government’s budget constraint is

τtF (kt, 1) = Tt.



Factor prices are

wt = (1− τt)Fl(kt, 1)

and
rt = (1− τt)Fk(kt, 1)

Note that

cwt = Cw(kt, τt)
= Fl(kt, 1) + τtFk(kt, 1)kt

and that

cct = Cc(kt, τt, kt+1)
= (1− τt)Fk(kt, 1)kt − kt+1



The Ramsey Problem

The objective of the government is

∞∑
t=0

βt[λv(cct) + (1− λ)u(cwt)]

When the government can commit to future policy, it
chooses {τt}∞t=0 to maximize this objective subject to
{cwt}∞t=0 and {cct}∞t=0 being a competitive equilibrium.

We can rewrite it as choosing {kt+1, τt}∞t=0 to solve

max
∞∑
t=0

βt[λv(Cc(·)) + (1− λ)u(Cw(·))]

v′(Cc(t)) = βv′(Cc(t+ 1))[1− δ + (1− τt+1)Fk(kt+1, 1)]

where Cc(t) = Cc(kt, τt, kt+1), etc.

The constraint comes from the first order condition for
the capitalist’s problem.

The solution will not be time consistent for familiar
reasons.



The Case of No Commitment

Suppose that the government seeks to maximize its
objective function in each period.

We look for an equilibrium in which the current gov-
ernment sets the current tax correctly forecasting how
future governments will set the tax.

We restrict attention to Markov perfect equilibria where
the tax rate selected at time t just depends on the
capital stock in period t.

This is summarized by a function τt = Ψ(kt) - thus the
function Ψ is the key endogenous variable.

Attention is restricted to differentiable functions Ψ(·)

To characterize the function Ψ(·), we study the opti-
mal choice of τ by a government that understands that
future governments will choose according to Ψ.



The government has to anticipate how the private sec-
tor will respond - this is described by a function k′ =
H(k, τ)

The function H(k, τ) describes next period’s capital
stock if the current period’s tax is τ , the current pe-
riod’s capital stock is k and future governments set the
tax according to the rule Ψ(·).

To solve for H(k, τ) we use the first order condition for
the capitalists’ optimal investment decision

v′(Cc(k, τ,H)) = βv′(Cc(H,Ψ(H), H(H,Ψ(H))))
×[1− δ + (1−Ψ(H))Fk(H, 1)]

(I)

This equation has to hold for all (k, τ).

Given the private sector’s behavior and given an initial
capital level k, the government solves

max(τ,k′) λv(Cc(k, τ, k
′)) + (1− λ)u(Cw(k, τ))

+βV (k′)



subject to
k′ = H(k, τ)

where the value function V is defined recursively by

V (k) = λv(Cc(k,Ψ(k), H(k,Ψ(k)))
+(1− λ)u(Cw(k,Ψ(k))) + βV (H(k,Ψ(k)))

In equilibrium, the solution to the government’s prob-
lem must be Ψ(k).

We can thus describe the government’s equilibrium be-
havior as solving a dynamic programming equation

max(τ,k′) λv(Cc(k, τ, k
′))

+(1− λ)u(Cw(k, τ)) + βV (k′)
s.t. k′ = H(k, τ)

(II)

More formally, a Markov perfect equilibrium consists of
a collection of functions Ψ, H, and V such that H
solves (I), V solves (II), and Ψ attains the maximum in
(II).



Characterizing the equilibrium

Consider the sequential problem of choosing {τt, kt+1}∞t=0

to solve

max
∞∑
t=0

βt[λv(Cc(kt, τt, kt+1))

+(1− λ)u(Cw(kt, τt))]
s.t. kt+1 = H(kt, τt)

Note that this problem assumes that the current gov-
ernment can choose all future tax rates - which in fact
it cannot.

However, despite this its solution will coincide with that
of the dynamic-programming problem. (This is an ap-
plication of Bellman’s principle.)

Using the first order conditions for τt, τt+1 and kt+1

yields the following condition:

Rτ +Rk′Hτ

+β{R′k −
H′k
H′τ
R′τ} = 0

(III)



where ′s denote next period values and

R(k, τ, k′) = λv(Cc(k, τ, k
′))

+(1− λ)u(Cw(k, τ))

Moreover, in (III) this period’s functions are evaluated
at (kt, τt) = (k,Ψ(k)) and next period’s functions are
evaluated at (kt+1, τt+1) = (H(k,Ψ(k)),Ψ(H(k,Ψ(k))))

Equation (III) is a functional equation that must hold
for all k. It is known as the “Generalized Euler Equa-
tion” (GEE).

A time-consistent equilibrium is then a pair of functions
H and Ψ satisfying (I) and (III).



Interpretation of GEE

We can think of the GEE as a “variation”: given values
of k and k′′, τ and τ ′ are varied in the best possible
way.

If we increase τ , there will be an increase in Cw - which
provides a direct boost to the worker’s utility.

The capitalist is left with less resources, and reduces
current consumption and savings (i.e., k′).

The fall in k′ has two effects: i) reduces future con-
sumption of workers and capitalists (C ′w and C ′c)

ii) reduces τ ′ in order to keep k′′ constant - which im-
plies lower consumption of workers and more for capi-
talists.



Example

Assume that

u(c) = v(c) =
c1−σ − 1

1− σ

for σ 6= 1.

Further assume that

F (k, l) = kαl1−α

and that

(δ, λ, β, α) = (1, 0, 0.95, 0.3).

Then, in the Ramsey problem the steady state (i.e.,
(kt, τt) = (k, τ)) involves τ = 0.

This may seem a surprising result but it is an extension
of the zero capital income tax result.

In the no-commitment case, results depend on σ.



If σ = 1.5, steady state τ = 0.03, while if σ = 0.5,
steady state τ = 0.09.

Thus, without commitment taxes will be positive in the
long run leading to lower long run output.



5. New Dynamic Public Finance

Most literature on dynamic optimal taxation assumes
that the government is restricted to use linear taxes on
current variables like capital and labor income.

The weakness of this approach is that there is no ex-
plicit motivation for the restrictions that drive the anal-
ysis.

Why should the government be restricted to linear taxes?

Why should the government be restricted to using taxes
that are functions of current variables as opposed to
assets or the history of labor earnings?

This weakness has lead to a new literature about dy-
namic optimal taxation, called the “New Dynamic Pub-
lic Finance”.



Under the new approach, instead of specifying an ar-
bitrary set of tax instruments, the analyst specifies the
informational and/or enforcement frictions that limit
the government’s ability to tax.

Then the analyst designs a tax system that implements
second best efficient allocations given these frictions.

Thus, it is like the Mirrlees approach to static optimal
income taxation but applied to dynamic problems.

Indeed, this new literature is basically a dynamic ex-
tension of the Mirrlees model; that is, individuals have
different earnings generating abilities which are unob-
served by the government and these abilities change
over time.

These changing abilities create a need for insurance as
well as redistribution.



To provide an introduction to this material, we will
go through the survey article “New Dynamic Public
Finance: A User’s Guide” by Golosov, Tsyvinski and
Werning.



Model

The economy lasts for 2 periods, indexed by t ∈ {1, 2}

There are a continuum of individuals.

There are two goods - consumption and leisure.

In period t individuals get utility from consumption xt
and work lt according to the utility function

u(xt)− ϕ(lt)

where u is increasing, strictly concave, and twice con-
tinuously differentiable and ϕ is increasing, strictly con-
vex, and twice continuously differentiable.

Note that it is important to have risk aversion to cap-
ture the insurance role for policy.

Individuals have a discount rate β.



Individuals are endowed with l units of time in each
period. Assume that ϕ′(0) = 0 and that liml→l ϕ

′(l) =
∞.

In each period individuals differ in their income gener-
ating abilities.

In period t an individual with income generating ability
a earns income yt = alt if he works an amount lt.

There are n ability types in each period indexed by
i = 1, ..., n.

Ability type i has ability ai.

Let π1(i) denote the probability that an individual has
ability type i in period 1.

This will also equal the fraction of ability type i in pe-
riod 1.



Let π2(j| i) denote the probability that an individual
who has ability type i in period 1 has ability type j in
period 2.

There is a government which has an exogenous revenue
requirement of G each period.

Individuals and the government can borrow or lend at
the exogenously fixed interest rate R.

Let (x1(i), y1(i)) denote period 1 consumption and earn-
ings of a type i individual.

Let (x2(j| i), y2(j| i)) denote period 2 consumption and
earnings of a type j individual who was type i in period
1.

The resource constraint in period 1 is∑
i

x1(i)π1(i) +G+ S =
∑
i

y1(i)π1(i)



where S denotes aggregate savings.

The resource constraint in period 2 is∑
i

∑
j

x2(j| i)π2(j| i)π1(i) +G

=
∑
i

∑
j

y2(j| i)π2(j| i)π1(i) + (1 +R)S

By solving out for S, we can collapse these down to
one single present value resource constraint

∑
i

x1(i) +
1

1 +R

∑
j

x2(j| i)π2(j| i)

π1(i)

+G+
G

1 +R

=
∑
i

y1(i) +
1

1 +R

∑
j

y2(j| i)π2(j| i)

π1(i)



Social welfare is defined as

∑
i

[
u(x1(i))− ϕ(y1(i)

ai
)

+β
∑

j

(
u(x2(j| i))− ϕ(y2(j|i)

aj
)
)
π2(j|i)

]
π1(i)

This is a Utilitarian social welfare function.



The First Best

The first best allocation solves the problem of maximiz-
ing social welfare subject to the present value resource
constraint.

The first best allocation satisfies the following first or-
der conditions for all i.

ϕ′(
y1(i)

ai
) = aiu

′(x1(i))

ϕ′(
y2(j| i)
aj

) = aju
′(x2(j| i)) for all j

and

u′(x1(i)) = β(1 +R)
∑
j

u′(x2(j| i))π2(j| i)

The first two conditions are the familiar consumption-
leisure trade off from the static optimal income tax
model.



The second is the intertemporal consumption smooth-
ing condition.

When β = 1/(1+R), this condition implies that x1(i) =
x2(j| i) for all j which implies that consumption is
smoothed across time and across states.



The Second Best

Suppose that government is unable to observe individ-
uals’ ability types or labor supplies.

Assume it can observe their incomes and savings.

The government’s problem can be formulated as a mech-
anism design problem.

The individuals make ability reports ir and jr to the
government in the first and second period.

The government provides bundles (x1(ir), y1(ir)) and
(x2(jr| ir), y2(jr| ir)).

For each ability type i a reporting strategy is a choice
of a first period report ir and a plan for the choice of
a second period report jr(j).



Each ability type must have an incentive to tell the
truth, so that it must be the case that for each i

u(x1(i))− ϕ(
y1(i)

ai
)

+β
∑
j

[
u(x2(j|i))− ϕ(

y2(j|i)
aj

)

]
π2(j|i)

≥ u(x1(ir))− ϕ(
y1(ir)

ai
)

+β
∑
j

[
u(x2(jr(j)|ir))− ϕ(

y2(jr(j)|ir)
aj

)

]
π2(j|i)

for all alternative reporting strategies ir and jr(j).

The second best allocation maximizes social welfare
subject to the present value resource constraint and
the incentive constraints.



Results

i. Intertemporal distortions

Consider first the case with constant types; i.e., π2(i|i) =
1.

In this case, the problem simplifies to

max
∑
i

[
u(x1(i))− ϕ(y1(i)

ai
)

+β
(
u(x2(i))− ϕ(y2(i)

aj
)
) ]π1(i)

subject to ∑
i

[
x1(i) +

1

1 +R
x2(i)

]
π1(i)

+G+
G

1 +R

=
∑
i

[
y1(i) +

1

1 +R
y2(i)

]
π1(i)



and for each i = 1, ..., n

u(x1(i))− ϕ(
y1(i)

ai
)

+β

[
u(x2(i))− ϕ(

y2(i)

ai
)

]
≥ u(x1(ir))− ϕ(

y1(ir)

ai
)

+β

[
u(x2(ir))− ϕ(

y2(ir)

ai
)

]
for all ir = 1, ..., n.

Proposition 1 With constant types, a second best al-
location satisfies for all i = 1, ..., n

u′(x1(i)) = β(1 +R)u′(x2(i))

Proof: To see this, note that only the total utility from
consumption u(x1) +βu(x2) enters the objective func-
tion and incentive constraints.



It follows that for any total utility coming from con-
sumption u(x1(i)) + βu(x2(i)), it must be that re-
sources x1(i) + 1

1+Rx2(i) are minimized.

The result then follows immediately. �

This is basically the optimal mixed taxation result due
to Atkinson and Stiglitz in a different environment.



Now consider the general case.

Proposition 2 A second best allocation satisfies for all
i = 1, ..., n the Inverse Euler Equation

1

u′(x1(i))
=

1

β(1 +R)

∑
j

1

u′(x2(j| i))
π2(j| i)

Proof: To see this, consider some second best alloca-
tion and take some type i.

Imagine increasing second period consumption utility
for this type in a parallel way across realizations.

That is, define u(x̃2(j| i; ∆)) = u(x2(j| i)) + ∆ for
∆ > 0 small.

To compensate decrease first period consumption util-
ity by β∆.

That is, define u(x̃1(i; ∆)) = u(x1(i)) − β∆ for small
∆.



Note that such variations do not affect the objective
function or the incentive constraints.

Thus, for the original allocation to be optimal, it must
be that ∆ = 0 minimizes the resources expended.

The resources expended are

x̃1(i; ∆) +
1

1 +R

∑
j

x̃2(j| i; ∆)π2(j| i)

These equal

u−1 (u(x1(i))− β∆) +

1

1 +R

∑
j

u−1 (u(x2(j| i)) + ∆)π2(j| i)

Minimizing this problem and evaluating at ∆ = 0 yields
the result. �



Proposition 3 Suppose that for some i, there exists
some j such that 0 < π2(j| i) < 1. Then a second best
allocation which is such that x2(j| i) is not independent
of j satisfies

u′(x1(i)) < β(1 +R)
∑
j

u′(x2(j| i))π2(j| i)

Proof: Apply Jensen’s Inequality to the result in Propo-
sition 2. �

Thus, with variable types, in a second best allocation,
the intertemporal allocation of resources is distorted.

This is perhaps the most significant result of the New
Dynamic Public Finance.

It stands in stark contrast to the results of the optimal
capital taxation literature.



ii. Tax Implementations

What type of tax systems will implement the second
best allocations?

In this economy, period 1 taxes can be a function of
period 1 income; i.e., T1(y1).

Period 2 taxes can be a function of period 1 income,
period 2 income, and savings; i.e., T2(y1, y2, s).

Given such a tax system, an individual of type i would
solve

maxu(x1)− ϕ(y1ai )

+β
∑
j

(
u(x2(j))− ϕ(

y2(j)

aj
)

)
π2(j| i)

subject to
x1 + s = y1 − T1(y1)

and
x2 = y2 + s(1 + r)− T2(y1, , y2, s)



The tax system {T1(y1), T2(y1, y2, s)} implements the
second best allocation if for all ability types i the so-
lution to this problem coincides with the second best
allocation.

In the static Mirrlees model, we can infer the marginal
income tax rate from the distortion or “wedge” in the
consumption-labor first order condition.

Thus, in the two type model for each type i ∈ {L,H}

T ′(yi) = 1− ϕ′(yi/ai)

ai
.

It is tempting to think that we can infer the marginal tax
rates on period 1 and 2 earnings from the consumption-
labor wedges and the marginal tax rate on earnings from
savings from the intertemporal wedge.

This turns out not to be the case.



Intuitively, each wedge controls only one aspect of the
individual’s behavior taking all other choices fixed at
their optimal levels.

However, individuals choose labor and savings jointly.

Generally, there can be many different tax systems that
will implement the second best allocation.

Thus, the notion of the optimal tax system may not be
well defined.

In an infinite horizon model in which each individual’s
ability is the realization of an IID random variable, Al-
banesi and Sleet ReStud (2006) show that the second
best allocation can be implemented with a tax system
of the form {Tt(yt, wt)}∞t=0 where wt denotes wealth at
the beginning of period t

Thus, period t taxes just depend on period t income
and wealth.



In an infinite horizon neoclassical general equilibrium
model, Kocherlakota Ecma (2005) shows that the sec-
ond best allocation can be implemented with a tax sys-
tem which separates capital from labor taxation.

Taxes on labor income in period t depend on the whole
history of labor earnings up until period t and can be
complicated non-linear functions.

Taxes on capital are linear and also history dependent.



iii. Time Inconsistency

A novel type of time inconsistency problem arises in
these type of models.

We have been assuming so far that the government
commits to a tax system at the beginning of period 1.

If the optimal tax system induces individuals of different
ability types to earn different amounts, an individual’s
earnings choice in period 1 will reveal his period 1 ability
type.

If individuals’ ability types are persistent, an individual’s
period 1 earnings choice will reveal information about
his period 2 ability type.

The government would like to use this information to
design a better tax system in period 2.



If the government cannot commit, it will use this infor-
mation.

However, individuals will know this and this will further
distort their period 1 choices.

This time inconsistency problem in dynamic Mirrlees
models was first pointed out by Roberts ReStud (1984).

He considered a T-period repeated Mirrlees model in
which ability types were fully persistent.

He provided conditions under which the unique equilib-
rium involved the highly inefficient outcome in which all
types declare themselves to be the lowest ability type
in all periods and supply the lowest level of labor and
receive the lowest consumption level.



V. Optimal Transfer Programs

All governments in developed countries operate pro-
grams to help the poor.

The U.S. federal goverment offers two major cash trans-
fer programs (TANF and SSI) and three major in-kind
transfer programs (Medicaid, public housing, and food
stamps).

The U.S. government also offers programs to help the
working poor such as the EITC and Minimum Wage.

Transfer programs for the poor are distinct from social
insurance programs like Social Security, Medicare, and
Unemployment Insurance.

There is a vast literature on programs for the poor, both
theoretical and empirical.

The lectures will discuss the following issues.



1. Why should the government be in the business of
helping the poor?

2. How should cash assistance programs be optimally
designed?

3. What is the role for in-kind transfers?

4. What determines public generosity towards the poor?



1. Why Government?

Two approaches can be distinguished.

The efficiency approach asserts that government pro-
vision of transfers to the poor is necessary to remedy
the market failure created by the fact that citizens are
altruistic and the welfare of the poor is a public good.

Because the welfare of the poor is a public good, private
charity can be expected to under-provide transfers to
the poor.

Public provision of transfers therefore can make all cit-
izens better off.

Related ideas are that transfers are Pareto improving
because they reduce crime and social unrest.

The distributive justice approach views support for the
poor as a moral responsibility of the government even
if citizens do not care about the poor.



Different notions of distributive justice are embodied in
society’s social welfare function.

Under a Utilitarian social welfare function, the govern-
ment seeks to maximize aggregate utility.

This implies a case for redistribution from the rich to
the poor when there is diminishing marginal utility of
income.

Under a Rawlsian social welfare function, the govern-
ment seeks to maximize the utility of the worst off per-
sons in society.

This yields a case for redistribution, even if there is not
diminishing marginal utility of income.



2. The Design of Cash Assistance
Programs

The literature on the design of cash assistance programs
takes some of its inspiration from issues in the TANF
program.

The structure of benefits under this program is as fol-
lows:

B(y) =

{
G− ry if y ≤ G/r

0 if y > G/r

where y is income, G is the guarantee and r is the
benefit reduction rate.

Thus, there is considerable interest in understanding
what is the optimal benefit reduction rate or the slope
of the benefit function.

Benefits under this program are also categorical, in the
sense that only single parent families are eligible.



This led to some interest in understanding the use of
categorization.

Benefits are also time limited and many states impose
work requirements or workfare.

This led to interest in time limits and workfare.

There are two basic approaches to thinking about de-
sign problems.

The general equilibrium approach embeds the problem
of designing cash assistance into the general problem of
choosing an optimal tax system for the whole society.

Thus, the cash assistance program is designed as part
of the optimal tax system.



The partial equilibrium approach considers the problem
of minimizing the fiscal cost of providing some target
population (e.g., single parent families) with some min-
imum utility or income level.

For normative work, the minimum utility constraint
makes the most sense.

However, as a positive matter, it politicians do not seem
to value the leisure of the poor and hence the minimum
income constraint is an interesting one to adopt for
positive purposes.

A minimum income constraint is an example of a non-
welfarist objective.

The advantage of the approach is that it does not re-
quire the modelling of the entire economy and hence
permits a sharper focus on program design.



The general equilibrium approach

We have already looked at this approach when we cov-
ered optimal income taxation.

Suppose there are some citizens with either 0 or very
low income generating ability.

If the social welfare function is sufficiently concave and/or
the marginal utility of consumption is sufficiently dimin-
ishing, the solution to the Mirrlees model will involve
providing transfers for those with zero or low earnings.

Since we know that T ′(y) ∈ (0, 1), the transfer will be
phased out as income rises.

The picture will resemble a non-linear negative income
tax.



This prescription is somewhat puzzling in light of the
EITC program which provides earnings subsidies to those
with low earnings.

These earnings subsidies imply that T ′(y) < 0 for low
y.

Earnings subsidies can be rationalized if the relevant
labor supply decision for individuals is whether or not
to work rather than how hard to work.

The former is referred to as the extensive margin and
the latter as the intensive margin.

The Mirrlees model assumes that individuals respond
to the tax system along the intensive margin.

However, the empirical labor supply literature has shown
that extensive labor supply elasticities are significant for
low income earners.



In particular, the EITC has had positive effects on labor
force participation of beneficiaries.

By contrast, evidence of significant responses along the
intensive margin is more limited.

Saez QJE (2002) analyzes the optimal income taxation
problem under the assumption that the relevant margin
of response is the extensive margin.



Saez’s Model

There are a continuum of individuals and I types of
occupations.

Individuals can be unemployed in which case they earn
w0 = 0.

Those in occupation i earn wi where 0 < w1 < .... <
wI .

Each individual is characterized by the occupation that
he can do i ∈ {0, ..., I} and his disutility of work θ.

Those individuals for whom i = 0 have no choice but
to be unemployed.

All individuals can choose to be unemployed, but indi-
viduals can only do at most one occupation.



The fraction of individuals who can do occupation i is

hi where
I∑
i=0

hi = 1.

The fraction of individuals whose disutility of work is
less than θ is F (θ).

The government has a revenue requirement R.

The government cannot observe individuals’ types (i, θ)
but can observe occupational choice.

The tax paid by those in occupation i is Ti.

The government puts weight µ(i, θ) on the welfare of
type (i, θ) individuals.

The weights are normalized so that

I∑
i=0

∫
θ
µ(i, θ)dF (θ)hi = 1.



The government’s problem

Individual (i, θ) will work if

wi − Ti − θ ≥ −T0.

The fraction of individuals working in occupation i ∈
{1, ..., I} is

F (wi − Ti + T0)hi.

The fraction of unemployed individuals is

h0 +
I∑
i=1

(1− F (wi − Ti + T0))hi.

Government revenue is

I∑
i=1

F (wi − Ti + T0)hiTi

+

[
h0 +

I∑
i=1

(1− F (wi − Ti + T0))hi

]
T0



Given the taxes (T0, Ti) the utility of a type (i, θ) (i 6=
0) is

u[T0, Ti; (i, θ)]

=

{
wi − Ti − θ if θ ≤ wi − (Ti − T0)

−T0 otherwise

The utility of a type (0, θ) is just

u[T0; (i, θ)] = −T0

The government’s objective function is

I∑
i=0

∫
θ
µ(i, θ)u[T0, Ti; (i, θ)]dF (θ)hi

The government wants to choose a tax system (T0, ...., TI)
to maximize this objective function subject to its bud-
get constraint.



Results

Define the elasticity of participation for occupation i ∈
{1, ..., I} to be

ηi =
wi − Ti + T0

F (wi − Ti + T0)hi

∂ [F (wi − Ti + T0)hi]

∂ (wi − Ti + T0)

=
(wi − Ti + T0) f(wi − Ti + T0)

F (wi − Ti + T0)
.

Define the welfare weight for occupation i ∈ {1, ..., I}
to be

gi =

∫ wi−(Ti−T0)
−∞ µ(i, θ)dF (θ)

F (wi − Ti + T0)

and the welfare weight for the unemployed to be

g0 =∫
θ µ(0, θ)dF (θ)h0 +

∑I
i=1

∫∞
wi−(Ti−T0) µ(i, θ)dF (θ)hi

h0 +
∑I

i=1(1− F (wi − Ti + T0))hi



Then we have:

Proposition The optimal tax system satisfies for each
i ∈ {1, ..., I}

Ti − T0

wi − Ti + T0
=

1

ηi
[1− gi]

Proof: Substituting in the utility functions, the objec-
tive function is∫

θ
µ(0, θ)dF (θ)h0(−T0)

+

I∑
i=1

[ ∫ wi−(Ti−T0)
−∞ µ(i, θ)(wi − Ti − θ)dF (θ)

+
∫∞
wi−(Ti−T0) µ(i, θ) (−T0) dF (θ)

]
hi

The Lagrangian is

L =

∫
θ
µ(0, θ)dF (θ)h0(−T0)+

I∑
i=1

[ ∫ wi−(Ti−T0)
−∞ µ(i, θ) (wi − Ti − θ) dF (θ)

+
∫∞
wi−(Ti−T0) µ(i, θ) (−T0) dF (θ)

]
hi



+ λ

[ ∑I
i=1 F (wi − Ti + T0)hiTi −R+[

h0 +
∑I

i=1(1− F (wi − Ti + T0))hi

]
T0

]

The first order condition for T0 is

λ


h0 +

I∑
i=1

(1− F (wi − Ti + T0))hi

+
I∑
i=1

f(wi − Ti + T0)hi(Ti − T0)

 =

∫
θ
µ(0, θ)dF (θ)h0 +

I∑
i=1

∫ ∞
wi−(Ti−T0)

µ(i, θ)dF (θ)hi.

The first order condition for Ti (i ∈ {1, ..., I}) is

λ {F (wi − Ti + T0)hi − f(wi − Ti + T0)hi(Ti − T0)}

=

∫ wi−(Ti−T0)

−∞
µ(i, θ)dF (θ)hi.



The second condition implies that

Ti − T0 =
F (wi − Ti + T0)

f(wi − Ti + T0)

−
∫ wi−(Ti−T0)
−∞ µ(i, θ)dF (θ)

λf(wi − Ti + T0)

In addition, substituting the second condition into the
first condition implies that

λ =

∫
θ
µ(0, θ)dF (θ)h0 +

I∑
i=1

∫ ∞
∞

µ(i, θ)dF (θ)hi

= 1

Thus, we have that

Ti−T0 =
F (wi − Ti + T0)

f(wi − Ti + T0)
−
∫ wi−(Ti−T0)
−∞ µ(i, θ)dF (θ)

f(wi − Ti + T0)

Using the definitions of ηi and gi yields the result.
�



Assume that the government has redistributive tastes
so that

g0 > g1 > ..... > gI

Note that

I∑
i=1

giF (wi − Ti + T0)hi

+g0

[
h0 +

I∑
i=1

(1− F (wi − Ti + T0))hi

]
= 1

Thus, there must exist i∗ such that gi ≥ 1 for i ≤ i∗

and gi < 1 for i > i∗.

It follows from the Proposition that Ti ≤ T0 for i ≤ i∗
and Ti < T0 for i > i∗.

Assuming i∗ ≥ 1, the government provides a higher
transfer to workers in occupation 1 than the unem-
ployed (or, equivalently, levies a lower tax).

Thus, the optimal tax system involves an earnings sub-
sidy.



The partial-equilibrium approach

An illustrative model of the partial equilibrium
approach follows.

There is a population of potentially poor people (e.g.,
single parents) divided into two types according to
their income generating ability or wage, denoted by ai,
where 0 < a1 < a2.

Let πi denote the fraction of type i’s.

Each individual is endowed with T units of time and
has a quasi-linear utility function

u = x− ϕ(l)

where x is consumption and l is labor supply.

The function ϕ is increasing, strictly convex and satis-
fies ϕ′(0) = 0 and ϕ′(T ) > a2.



In the absence of government intervention, individuals
of type i would have incomes

ỹi = arg max{y − ϕ(y/ai)}

and enjoy utility levels

ũi = ỹi − ϕ(ỹi/ai).

The government is concerned that all citizens utility be
above some target minimal level u but desires to ensure
that this objective is reached at minimum fiscal cost.

This is a utility-based objective as opposed to an income-
based objective.

The problem is utility maintenance rather than income
maintenance.

The income maintenance problem can also be analyzed
in a similar manner.



Assume that
ũ2 > u > ũ1.

Thus, the type 1s are needy and the type 2s are non-
needy.

Assume further that the government cannot observe
individuals’ types.

Issues

There are a number of issues that can be studied in this
type of model.

First, we can study optimal linear benefit schedules of
the form used in the TANF program

B(y) =

{
G− ry if y ≤ G/r

0 if y > G/r



In particular, we can characterize the optimal benefit
reduction rate.

Second, we can look at optimal non-linear benefit sched-
ules using the techniques we used to study the two type
Mirrlees model.

Third, we can explore the case for workfare.

I will ask you to explore these issues in a problem set.



3. The Role for In-kind Transfers

If the concern of policy-makers is the utility of the poor,
then basic microeconomics suggests that cash transfers
are always better than in-kind transfers.

This is because cash transfers allow recipients to choose
the bundle of goods that gives them the greatest utility.

This notwithstanding, in-kind transfers to the poor are
common in the U.S. and elsewhere.

The literature identifies a number of possible rationales
for in-kind transfers



Paternalism

The simplest explanation is that tax-payers and policy-
makers do not care about the utility of the poor, they
just care about their consumption of food, housing, and
healthcare.

This is related to the point made earlier concerning
politicians not valuing the leisure time of the poor.

This seems to be the case, as people are far more willing
to give the homeless food or shelter than they are to
give them cash.

Often this may be motivated by the concern that some
poor people are not the best judge of their own welfare
because they have problems with addictive goods such
as drugs and alcohol.



Targeting

A slightly more subtle explanation is that in-kind trans-
fers help policy-makers target assistance to those who
need it the most.

For example, suppose that the government wants to
help the homeless but that being homeless is not easily
observable.

Then if the government offers cash transfers to all those
who claim to be homeless, then this is likely to attract
more recipients than would an offer of free sleepovers
at a homeless shelter.

On this argument see Blackorby and Donaldson AER
(1988).



Pecuniary effects

An in-kind program will likely have different price effects
from a cash program.

For example the building of public housing will depress
housing rents by more than would an equally costly cash
transfer program.

This price effect may allow the government to get more
bang for its buck in terms of helping the poor.

On this argument, see Coate, Johnson, and Zeckhauser
JPubE (1994)



Samaritan’s dilemma

The most interesting explanation of in-kind transfers
stems from the Samaritan’s Dilemma.

This argument motivates the provision of in-kind trans-
fers of insurance and/or self protection

We illustrate the Samaritan’s Dilemma argument using
the model of Coate AER (1995)



Coate’s model

There are three individuals, two are rich and the other
is poor.

The poor person has income yp and faces uncertainty

With probability π he suffers a loss L

His utility function is u(x) where u is increasing and
strictly concave

The poor person can purchase insurance against his
loss: z units of coverage costs πz

The rich individuals have incomes yr > yp.

They are altruistic towards the poor person and have
utility functions uir = x + δup where i ∈ {1, 2}, x is
consumption and up is the poor person’s utility.



There is a government that acts so as to maximize
the aggregate utility of the rich; i.e., to maximize the
welfare function W = u1

r + u2
r .

Because the rich are altruistic and because of the free
rider problem, the government operates a transfer pro-
gram for the poor person.

Let T be the transfer to the poor person and assume it
is financed by taxes T/2 on each rich person.

The timing of the interaction between the citizens is as
follows.

1) The government chooses a transfer.

2) The poor person makes an insurance choice.

3) Nature chooses whether or not the poor person ex-
periences a loss.

4) The rich provide charitable transfers.



Cash transfers when the rich can commit

Suppose the rich can commit not to give charity to the
poor person.

Since he is risk averse the poor person would fully insure
himself and obtain utility u(yp − πL+ T )

The optimal government transfer is

T o = arg max{2yr − T + 2δu(yp − πL+ T )}

implying that

2δu′(yp − πL+ T o) = 1

Let W o denote the maximal level of welfare.



Cash transfers when the rich cannot
commit

Suppose the rich cannot commit not to give charity to
the poor person.

Suppose further that the government gives the poor
person a transfer T and assume that
δu′(yp − πL+ T ) ≤ 1 so that the rich would have no
incentive to give transfers if the poor person fully
insured.

Consider the poor person’s insurance decision.

If he fully insures his utility will be u(yp − πL+ T ).

If he does not fully insure he may get transfers from
the rich if he suffers a loss.

Suppose he purchases z < L units of coverage.



If he suffers a loss the rich guys will choose transfers
(τ∗1 , τ

∗
2 ) where for i = 1, 2

τ∗i = arg max
τi≥0
{yr −

T

2
− τi

+ δu(yp + (1− π)z − L+ T + τ∗−i + τi)}

The aggregate transfer will be

τ∗(T, z) = max{0, ξ(T )− (1− π)z}

where ξ(T ) is such that

δu′(yp − L+ T + ξ(T )) = 1.

The optimal amount of insurance coverage for the poor
person is

z∗(T ) = arg max
z≥0
{πu(yp + T + (1− π)z − L+ τ∗(T, z))

+ (1− π)u(yp + T − πz)}

Lemma (i) Either z∗(T ) = 0 or z∗(T ) = L. (ii) If
z∗(T o) = 0 and T < T o then z∗(T ) = 0.



Proof: For (i) substitute in the expression for τ∗(T, z)
into the poor person’s expected utility and consider how
it depends on z.

Note that the poor person’s expected utility is decreas-
ing in z as long as charitable transfers are positive and
increasing thereafter.

Thus, the optimal choice of z is either no coverage or
full coverage.

For (ii) simply note that the difference in the payoffs
from having no coverage and full coverage is decreasing
in T . �

Proposition 1 If z∗(T o) = 0, the government can-
not achieve the welfare level W o with a cash transfer
program.

Proof: If T > T o the the government will be transfer-
ring too much from the viewpoint of the rich.



If T < T o then the poor person will not take out insur-
ance and the allocation of resources will be inefficient.

Why inefficient?

(i) the poor person will not be fully insured.

(ii) if the bad state happens the poor person will not
have enough consumption from the viewpoint of the
rich because of free riding. �



In-kind transfers when the rich cannot
commit

Proposition 2 The government can achieve the welfare
level W o with a transfer program that provides the poor
person with L units of insurance coverage and a cash
transfer T o − πL.

Alternatively, the government could simply mandate
that the poor person buy insurance.

The key point is that the insurance decision cannot be
delegated to the poor person.



4. What determines public generosity
towards the poor?

Different countries and even different U.S. states offer
very different levels of support for the poor.

An interesting question is why.

There are a number of papers on this question.

The simplest answer is that citizens have different de-
grees of altruism.

This might be driven by (say) ethnic diversity as dis-
cussed by Luttmer JPE (2001).

Piketty QJE (1995) points out that even if citizens are
equally altruistic, they will choose different levels of
redistribution if they have different beliefs about the
incentive costs of redistribution.



He then argues that societies with the same underlying
economic environments can end up with very different
beliefs about the incentive costs of redistribution.

This provides a multiple equilibria explanation of why
societies have different levels of poor support.



Piketty’s Model

There are an infinite number of time periods indexed
by t = 0, 1, 2, ...

There are a continuum of dynastic families indexed by
i ∈ [0, 1]

Each period represents a generation and each dynasty
has one offspring each period

Let yit be dynasty i’s pre-tax income in period t

Assume that yit ∈ {y0, y1} where 0 < y0 < y1

Let Lt be the fraction of dynasties at time t who had
low income in the previous period; that is,

Lt = m({i ∈ [0, 1] : yit−1 = y0})

where m(I) is the measure of the set I ⊂ [0, 1]



Let Ht = 1− Lt be the fraction of dynasties at time t
who had high income in the previous period

The probability that a dynasty has income y1 depends
upon effort, luck, and social origin.

Thus, letting eit be dynasty i’s effort in period t

Pr{yit = y1 |yit−1 = y0, eit = e} = π0 + θe

and

Pr{yit = y1 |yit−1 = y1, eit = e} = π1 + θe

where 0 < π0 < π1 < 1 and θ > 0.

The material welfare of dynasty i at time t is

Uit = xit −
(eit)

2

2a

where xit denotes their consumption and a > 0.

The government operates a simple negative income tax
which taxes all incomes at rate τ and redistributes the
proceeds in a uniform manner.



Thus, suppose the tax rate is τ at some time t and
aggregate income is Yt. Then a dynasty with income
y0 obtains a post tax income

(1− τ)y0 + τYt

while a dynasty with income y1 obtains a post tax in-
come

(1− τ)y1 + τYt

The timing of actions for generation t is as follows:

(i) choose effort levels eit

(ii) incomes yit are realized

(iii) choose tax rate τt+1

Thus, tax rates for the current generation are deter-
mined by the past generation.



When voting over tax rates, all dynasties in period t
have the same objective of maximizing the expected
welfare of the lower class children; i.e.,

Vt+1 =

∫
i∈Lt+1

Uit+1di

To figure out preferred tax rates, suppose the tax rate
for generation t+ 1 is τt+1

Then the effort choice of generation t+ 1 is

e(τt+1; θ) = arg max θe(1− τt+1)(y1 − y0)− e2

2a

implying that

e(τt+1; θ) = aθ(1− τt+1)(y1 − y0)

Thus, the optimal tax rate is

τt+1(π1 − π0, θ) = arg max
τ

(π0 + θe(·))(1− τ)y1

+ (1− π0 − θe(·))(1− τ)y0

+ τ [y0 + (π0Lt+1 + π1Ht+1

+ θe(·))(y1 − y0)]− e(·)2

2a



implying that

τt+1(π1 − π0, θ) =
Ht+1(π1 − π0)

a(y1 − y0)θ2

If the parameters (π0, π1, θ) were known by everyone,
then everybody would agree on the optimal tax rate.

Starting from any initial condition (L0, H0, τ0) the econ-
omy would converge toward a unique steady-state dis-
tribution (L∞, H∞, τ∞).



Dynastic Learning

Now assume that dynasties have different beliefs about
the structural parameters (π0, π1, θ).

Let (π∗0, π
∗
1, θ
∗) be the true values.

What happens in the long run if the dynasties start out
with different beliefs?

Assume that each dynasty learns from its own experi-
ence only.

The initial state of the economy is (L0, H0, τ0, (µi0)i∈[0,1])
where µi0 represents the prior beliefs of dynasty i - it
can be any probability measure defined on the set of all
logically possible (π0, π1, θ)

Then in period 0 dynasty i:



(i) chooses effort level ei0(τ0, µi0) to maximize its ex-
pected welfare

(ii) rationally updates its beliefs given its income yi0

(iii) votes over τ1 by supporting its socially optimal pol-
icy τi1(µi1(·)) given its posterior beliefs µi1

(iv) transmits its posterior beliefs to its offspring

and so on for the next generation.

Effort choices

Let θ(µit) denote the expected value of θ given beliefs
µit; i.e.,

θ(µit) =
∑

supp(µit)

θµit(π0, π1, θ)



then dynasty i at time t will choose effort level

eit(τt, µit−1) = e(τt, θ(µit−1))

Voting decisions

Suppose that the average posterior beliefs of those in
generation t (other than i) concerning θ are θt; i.e.,

θt =

∫
j 6=i

θ(µjt)dj.

Then the optimal tax in period t+1 from the viewpoint
of dynasty i in period t is

τit+1(µit) = arg max
τ

∑
supp(µit)

[(π0 + θe(τ, θt))(1− τ)y1

+ (1− π0 − θe(τ, θt))(1− τ)y0

+ τ [y0 + (π0Lt+1 + π1Ht+1

+ θe(τ, θt))(y1 − y0)]

− e(τ, θt)
2

2a
]µit(π0, π1, θ)



implying that

τit+1(µit) =
Ht+1(π1(µit)− π0(µit))

a(y1 − y0)θ2
t

+
θt − θ(µit)

θt

where π0(µit) and π1(µit) denote the expected values
of π0 and π1 given beliefs µit

Then, applying the median voter theorem, the policy
outcome is

τt+1 = med(τit+1(µit)i∈[0,1])

Belief Updating

The dynastic Bayesian updating is perfectly standard.

Consider for example dynasty i in generation t who has
prior beliefs µit−1. Suppose that i is lower class (i ∈ Lt)
but that its income in period t is y1.



Then, for any (π0, π1, θ) ∈supp(µit−1), we have that

µit(π0, π1, θ)

= µit−1(π0, π1, θ)×
π0 + θe(τt, θ(µit−1))∑

supp(µit−1)[π
′
0 + θ′e(τt, θ(µit−1))]µit(π′0, π

′
1, θ
′)



Steady-State Political Attitudes

Proposition 1 Whatever the initial condition (L0, H0,
τ0, (µi0)i∈[0,1]) for each dynasty i the belief µit(·) con-
verges with probability one toward some stationary be-
lief µi∞(·) as t goes to ∞. The equilibrium tax rate
τt converges toward some tax rate τ∞.

Does every dynasty necessarily adopt the same beliefs
in steady state?

Is the long run tax rate equal to the true socially optimal
tax rate?

To make the issue non-trivial assume that every dy-
nasty’s initial belief puts positive probability on the
truth.

Assumption 1 For every dynasty i, µi0(π∗0, π
∗
1, θ
∗) >

0.



To characterize what happens, for any tax rate τ let
S(τ) be the set of beliefs µ(·) such that

(i) for all (π0, π1, θ) ∈supp(µ)

π0 + θe(τ, θ(µ)) = π∗0 + θ∗e(τ, θ(µ))

and
π1 + θe(τ, θ(µ)) = π∗1 + θ∗e(τ, θ(µ))

and (ii) (π∗0, π
∗
1, θ
∗) ∈supp(µ).

Condition (i) says that when the tax rate is τ beliefs
in S(τ) generate effort decisions e(τ, θ(µ)) that lead to
expected probabilities of upward mobility which are the
same across all points in the support and coincide with
the true probabilities.

A dynasty starting with beliefs in the set S(τ) will never
modify these beliefs (assuming that the tax rate is τ .)



Proposition 2 (a) Under Assumption 1, whatever the
initial condition (L0, H0, τ0, (µi0)i∈[0,1]) the long run
steady state is such that:

(i) for all i, µi∞(·) ∈ S(τ∞)

(ii) τ∞ is the median of med(τi∞(µi∞)i∈[0,1]).

(b) For any beliefs distribution and tax rate ((µi∞)i∈[0,1],
τ∞) satisfying (i) and (ii) there exists some initial con-
dition (L0, H0, τ0, (µi0)i∈[0,1]) satisfying Assumption 1
such that the associated long run steady state is
((µi∞)i∈[0,1], τ∞)

The key point is that there are many beliefs that lead to
no contradiction between expectation and experience.

Let ∆(τ) be the set of all (π0, π1, θ) such that

π0 + θe(τ, θ) = π∗0 + θ∗e(τ, θ)



and
π1 + θe(τ, θ) = π∗1 + θ∗e(τ, θ)

Defining

π0(θ) = π∗0 + (θ∗ − θ)e(τ, θ),

we can write this as

∆(τ) = {(π0(θ), π∗1 − π∗0 + π0(θ), θ) : θ ≥ 0}.

Parameters in ∆(τ) are indistinguishable from the real
parameters in the sense that if one believes these are
the true parameters one will take an effort level lead-
ing to expectations about income mobility that exactly
coincides with experience.

All beliefs µ ∈ S(τ) have their averages (π0(µ), π1(µ),
θ(µ)) in ∆(τ).



Conversely, for any (π0, π1, θ) in ∆(τ) we can find many
beliefs µ ∈ S(τ) whose averages equal (π0, π1, θ).

Suppose that we are in a long run steady state with tax
rate τ∞.

Then the dynasties will have beliefs whose averages lie
in the set

∆(τ∞) = {(π0(θ), π∗1 − π∗0 + π0(θ), θ) : θ ≥ 0}.

The key point to note is that these dynasties all agree
about the difference between the averages π1(µi∞) and
π0(µi∞) - and they think it equals π∗1 − π∗0

Where they disagree is on the returns to effort θ(µi∞) -
they can be arrayed along a line with the median voter
being at the median position.

Those dynasties for whom θ(µi∞) is low, vote for more
redistribution and put in less effort.



It follows that a higher fraction of lower tax rate sup-
porters have high income

Moreover, those who support lower tax rates have a
higher probability of being upwardly mobile.

The model thus delivers nice predictions concerning
support for redistribution as a function of current in-
come and social class as measured by parental income.

Piketty argues that these predictions are consistent with
the data.



VI. Social Insurance

Social insurance programs provide transfers based on
events such as unemployment, disability, or age.

Examples in the U.S. are Social Security, Unemploy-
ment Insurance, Workers Compensation, and Disability
Insurance.

To be eligible for benefits, a worker must have paid in
to the programs - this is what makes them insurance
programs.

They should be contrasted with welfare programs that
provide transfers to those who are poor: social insur-
ance benefits are not means-tested.

Social insurance spending is the biggest and most rapidly
growing part of government expenditure today.



In 1953, social security comprised 3.6% of the govern-
ment budget, in 2008 it comprised 20.7%.

In 1953, income security comprised 5% of the govern-
ment budget, in 2008 it comprised 14.5%.

In these lectures, we will first explore motivations for
the provision of social insurance.

Then we will look at work on designing unemployment
insurance, social security, and disability insurance.



1. Why have social insurance?

The motivation for insurance is that it reduces risk for
risk-averse individuals

Thus, Unemployment Insurance reduces the risk from
involuntary unemployment

Workers Compensation and Disability Insurance reduce
the risk from work-related injuries and career-ending
disabilities.

Social Security reduces the risk from living to long.

But why is government intervention needed to provide
this insurance?

Possible sources of market failure here are: i) Adverse
selection, ii) Samaritan’s Dilemma, iii) Individual opti-
mization errors, and iv) Aggregate risk.



i) Adverse selection

Adverse selection can arise when consumers know more
about their risk type than do insurance companies.

This is a natural assumption in many insurance appli-
cations: e.g., auto, health, unemployment.

Seminal paper is Rothschild and Stiglitz (1976) who
analyzed what competitive equilibrium might look like
in insurance markets when consumer risk types are un-
observable.

They showed that market failure would result.

We will follow the treatment in Mas-Colell, Whinston,
and Green: Chp 13.D and Ex 13.D.2.



Rothschild-Stiglitz model

There are two types of consumers: high risk types (H)
and low risk types (L).

The fraction of high risk types is λ ∈ (0, 1).

Each consumer has initial income y and faces the pos-
sibility of loss L.

Type i consumers have probability of loss πi where
πH > πL.

Each consumer is risk-averse with utility function u(c)
(u′ > 0 and u′′ < 0) where c is consumption.

An insurance contract is characterized by a vector (p, T ).

p is the premium and T is the transfer paid out in the
event of loss.



Type i’s expected utility from the contract (p, T ) is

πiu(y − p− L+ T ) + (1− πi)u(y − p).

There are two risk-neutral insurance firms who compete
for consumers by offering insurance contracts.

We model the interaction between firms and consumers
as a two stage game.

Stage 1: The two firms simultaneously announce sets
of offered insurance contracts.

Each firm may announce any finite number of con-
tracts.

Stage 2: Consumers choose which contract, if any, to
buy.

We assume: i) if a consumer is indifferent between two
contracts he chooses the one with the highest transfer;



ii) if a consumer is indifferent between choosing a con-
tract and not, he chooses the contract; and

iii) if a consumer’s most preferred contract is offered
by both firms, he chooses each firm’s contract with
probability 1/2.

We study the pure strategy subgame perfect Nash equi-
libria (SPNEs) of this game.



Observable types

If firms could observe consumers’ types they can offer
differ contracts to different types of consumers.

The outcome in this case is full insurance.

Proposition 1 In any SPNE with observable types, a
type i consumer accepts contract (p∗i , T

∗
i ) = (πiL,L)

and firms earn zero profits.

Proof: It is straightforward to show that any contract
(p∗i , T

∗
i ) a type i consumer accepts must be such that

p∗i = πiT
∗
i (i.e., firms earn zero profits).

If p∗i < πiT
∗
i , a firm could do better by not offering the

contract.

If p∗i > πiT
∗
i , one firm could do better by offering a

slightly lower premium and serving the whole market.



Thus, we just need to show that T ∗i = L.

This can be done diagrammatically.

Let cL denote consumption in the loss state and cN
consumption in the no-loss state.

Then, with a contract of the form (p, T ) = (πiT, T ), a
type i consumer’s consumption in the two states is

cL = y − πiT − L+ T

and
cN = y − πiT.

The latter implies

T =
y − cN
πi



so that

cL(cN ) = y − πi
(
y − cN
πi

)
− L+

y − cN
πi

= y + (1− πi)
(
y − cN
πi

)
− L

This defines the locus of consumption pairs consistent
with zero profits.

The slope of this locus is

dcL(cN )

dcN
= −1− πi

πi
.

The type i’s consumer’s indifference curves are defined
by

πiu(cL) + (1− πi)u(cN ) = u

These indifference curves have slope

dcL(cN )

dcN
= −

[
1− πi
πi

]
u′(cN )

u′(cL)



Note that the indifference curves are tangent to the zero
profit line where cL = cN , which implies that T = L.

Now suppose that type i consumers were accepting a
contract (p∗i , T

∗
i ) = (πiT, T ) for some T 6= L.

Such a contract is illustrated in Fig 4.

Then either firm could deviate and earn strictly positive
profits by offering a contract in the shaded area of Fig
4 such as (p̃, T̃ ). �

The competitive equilibrium in the observable types
case is Pareto efficient.



cL

cN

full insurance

Ey − L

y

zero profit line
: slope=−1−πi

πi

IC∗
˜IC

(p∗i , T
∗
i )

(p̃i, T̃i)

Figure 4: Prop 1. Full insurance with zero profits

E is the initial endowment without insurance. Zero profit line equates

the insurance firm’s revenue pi with the expected cost πiTi. The

type i’s consumer’s indifference curves are defined by πiu(cL) + (1 −
πi)u(cN ) = ū. Suppose (p∗i , T

∗
i ) is optimal. Any contract in a shaded

area in yellow, say, (p̃i, T̃i) dominates (p∗i , T
∗
i ) and the insurance firm

gets a positive expected profit. Thus (p∗i , T
∗
i ) is not optimal.



Unobservable types

If firms cannot observe consumer types, then Proposi-
tion 1 does not hold.

The reason is that high types would accept the contract
intended for low types and then firms would lose money.

In principle, there are two possible types of equilibria:
pooling and separating.

In a pooling equilibrium, both types accept the same
contract.

In a separating equilibrium, types accept different con-
tracts.

We characterize the possible equilibria via a series of
Lemmas.



Lemma 1 In any SPNE with unobservable types, firms
earn zero profits.

Proof: Let (pL, TL) and (pH , TH) be the contracts
chosen by the two types and let the aggregate profits
of the two firms be Π.

Clearly, Π ≥ 0, otherwise at least one firm would be
better off not participating.

Assume Π > 0. Then one firm must be making no
more than Π/2.

Consider a deviation by the low profit firm in which it
offers contracts (pL − εL, TL) and (pH − εH , TH) for
εL > 0 and εH > 0 very small and such that

πiu(y − pi + εi − L+ Ti) + (1− πi)u(y − pi + εi)

≥ πiu(y − p−i + ε−i − L+ T−i)

+(1− πi)u(y − p−i + ε−i)



Contract (pL−εL, TL) will attract all the low types and
contract (pH − εH , TH) all the high types.

Since εL and εH can be made arbitrarily small, this
deviation must yield the firm close to Π. �



Lemma 2 No pooling equilibria exist.

Proof: Suppose to the contrary that there is a pooling
equilibrium in which the contract is (p, T ).

By Lemma 1, it must be the case that p = πT where
π = λπH + (1− λ)πL.

Suppose that firm 1 is offering contract (p, T ) as illus-
trated in Fig 5.

Then firm 2 has a deviation that yields a strictly positive
profit.

It offers a single contract (p̃, T̃ ) that satisfies p̃ > πLT̃
lying somewhere in the shaded region of Fig 5.

This contract attracts all the low types and none of the
high types.



cL

cN

full insurance

Ey − L

y

zero profit line
for Type L

zero profit line
for Type H

zero profit line
(a pooling eq.)

ICH

ICL

(p, T )

(p̃, T̃ )

Figure 5: Lem 2. No Pooling equilibrium

Since πH > πL, zero profit line for type L is steeper. If a pooling

equilibrium exists, then by Lemma 1 the equilibrium contract must be

on the insurance firm’s zero profit line. If an insurance firm offers (p̃, T̃ ),

only type L is attracted, and the firm has a positive profit. Therefore,

(p∗, T ∗) is not an equilibrium.



It therefore makes positive profits - which is a contra-
diction. �

Intuitively, the pooling equilibrium is broken by one firm
offering a contract that has less insurance but a lower
premium which attracts only the low risk types.

This is analogous to a “cream-skimming” strategy.



Lemma 3 If (pL, TL) and (pH , TH) are the contracts
chosen by the two types in a separating equilibrium.
Then pL = πLTL and pH = πHTH .

Proof: Suppose first that pH > πHTH .

Then either firm could make positive profits by offering
only contract (pH − ε, TH) where ε > 0 is sufficiently
small.

All high risk consumers would accept this contract, and
any low risk consumers who took it would contribute
positive profits.

This is a contradiction.

Next suppose that pL > πLTL as in Fig 6.

If we have a separating equilibrium (pH , TH) must be
such that pH < πHTH to guarantee zero profits.



Suppose firm 1 is offering the contract (pH , TH).

Then firm 2 could earn strictly positive profits by devi-
ating and offering only a contract (p̃, T̃ ) in the shaded
region.

This would attract only low types, because high types
prefer (pH , TH).

This deviation would yield positive profits - which is a
contradiction.

Since pH ≤ πHTH and pL ≤ πLTL, the fact that firms
make zero profits implies the result. �



cL

cN

full insurance

Ey − L

y

zero profit line
for Type L

zero profit line
for Type H

ICH

ICL

(pH , TH)

(pL, TL)
(p̃, T̃ )

Figure 6: Lem 3. pi = πiTi, i = L,H, under a separating
equilibrium

Suppose pL > πLTL, then (pH , TH) must be such that pH < πHTH
to guarantee zero profits. A firm gets a positive profit by providing
(p̃, T̃ ) which makes type L consumers better off.



Lemma 4 If (pH , TH) is the contract chosen by high
types in a separating equilibrium. Then (pH , TH) =
(πHL,L).

Proof: By Lemma 3 we have that pH = πHTH .

Suppose that TH 6= L as in Fig 7.

Then a firm can make positive profits by offering a
contract such as (p̃, T̃ ) in the shaded region.

All high risk types choose this contract and this con-
tract yields positive profits from any consumer who ac-
cepts it.

This is a contradiction. �



cL

cN

full insurance

Ey − L

y

zero profit line
for Type H

ICH

(pH , TH)
(p̃, T̃ )

Figure 7: Lem 4. H type gets fully insured.

If TH 6= L, then an insurance firm always wants to deviate this equi-

librium by offering (p̃, T̃ ) which is more attractive to type H and gives

the firm a positive profit.



Lemma 5 If (pL, TL) is the contract chosen by low
types in a separating equilibrium. Then pL = πLTL
and TL = T̂L where T̂L satisfies

πHu(y − πLT̂L − L+ T̂L) + (1− πH)u(y − πLT̂L)

= u(y − πHL).

Proof: By Lemma 4 we have that (pH , TH) = (πHL,L).

By Lemma 3 we have that pL = πLTL.

We know that high types weakly prefer (pH , TH) to
(pL, TL) and thus

πHu(y − πLTL − L+ TL) + (1− πH)u(y − πLTL)

≤u(y − πHL).

We just have to show the equality holds.

If not, the situation is as depicted in Fig 8.



cL

cN
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zero profit line
for Type H
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(p̃, T̃ )

(pL, TL)

Figure 8: Lem 5. (pL, TL) must intersect the type H’s
indifference curve.

Suppose (pL, TL) is an equilibrium contract for type L. Then a firm

wants to deviate from the equilibrium by offering (p̃, T̃ ) which attracts

type L consumers and gives the firm a positive profit.



Then a firm can make positive profits by offering a
contract such as (p̃, T̃ ) in the shaded region.

This contract attracts only low risk types and makes
money on each consumer.

This is a contradiction. �



Summarizing the results so far:

Proposition 2 In any SPNE with unobservable types,
type H consumers accept the contract (p∗H , T

∗
H) =

(πHL,L), type L consumers accept the contract (p∗L, T
∗
L)

= (πLT̂L, T̂L), and firms earn zero profits.

Proposition 2 characterizes an SPNE with unobservable
types if it exists.

But existence may be problematic.

Consider Fig 9.

Both types of consumers would prefer the pooling con-
tract (p̃, L) to their equilibrium contracts.

Moreover, such a contract would make positive profits
if all consumers took it.

Thus, one firm could deviate by offering the contract
(p̃, L) and make positive profits.

In this case, there does not exist an SPNE with unob-
servable types.



cL

cN

full insurance

Ey − L

y

zero profit line
for Type L

zero profit line
for Type H

(pooling)
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(pH , TH)
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(pL, TL)

Figure 9: A case where the separating equilibrium does not
exist.

Both types are better off and the insurance firm has a positive profit

with the pooling contract (p̃, L). However, the pooling equilibrium does

not exist. This case happens when the proportion of type L consumers

is large so that the pooling zero profit line is close to the zero profit

line for type L.



Social insurance

If it exists, an SPNE with unobservable types leaves
low risk consumers only partially insured, which is inef-
ficient.

If equilibrium does not exist, then it is not clear what
will happen: the model does not provide a prediction.

With a social insurance scheme, government could pro-
vide all individuals full insurance and finance it with a
head tax πL.

This would yield an efficient allocation.

However, when an SPNE exists, moving from the equi-
librium to such a social insurance scheme will not make
low types better off.

If it did, then the SPNE would not exist.



Empirical relevance

The idea that adverse selection is a real source of mar-
ket failure in insurance receives empirical support.

Casual empiricism suggests it is hard to buy dental in-
surance, except through an employer.

There is also no market for unemployment insurance.

A natural test for adverse selection is “are those who
buy more insurance more likely to suffer loss?”

This could be driven by moral hazard, but probably not
in certain contexts such as death.

Finkelstein and Poterba (2004) provide evidence of ad-
verse selection in the U.K. annuity market (annuities
provide insurance against living too long).



ii) Samaritan’s Dilemma

In the presence of altruism, individuals may not buy
insurance even when it is available.

This is because they anticipate receiving charity from
others if they suffer a loss.

Thus, for example, even if individuals could buy annu-
ities when they retire, they may figure their relatives
would take care of them if they lived too long and thus
forego purchase.

More generally, the same logic implies that individu-
als may not save adequately for their old age (see,
for example, Kotlikoff (1987) and Hansson and Stuart
(1989)).

This is a historically important argument for social se-
curity.



iii) Individual optimization errors

It could also be the case that individuals would screw
up their insurance decisions even if it were available and
there was no charity.

This maybe because individuals have difficulty assessing
probabilities or because they do not like having to think
about unpleasant scenarios.

Similar logic suggests that people may undersave for
retirement because they are myopic.

Such explanations become all the more plausible given
the all evidence emerging from behavioral economics.



iv) Aggregate risk

Private insurance handles best situations of idiosyn-
cratic risk where it can achieve cross-sectional pooling.

The premiums of the majority of fortunate policy-holders
pay for the claims of the unlucky minority.

Private insurance does less well handling situations of
aggregate risk in which entire groups are impacted by
negative shocks.

Government may have an advantage in coordinating
risk-sharing across large groups.

This is particularly the case for inter-generational risk
sharing since the market is unable to facilitate risk-
sharing between current generations and those not yet
born.



Obviously, insurance contracts cannot be purchased by
those not yet born.

Thus, if one generation experiences a severe recession
or war, the private market cannot spread the burden of
paying for these events across future generations.

The government through social security and debt can
however achieve intergenerational risk-sharing (see Gor-
don and Varian (1988)).



2. Unemployment insurance

Most governments in developed countries provide work-
ers with unemployment insurance.

Such schemes pay unemployed workers benefits for some
period of time after they have become involuntarily un-
employed.

These benefits are intended to tied them over while
they search for a new job.

Typically, unemployment insurance benefits are financed
by a tax paid by both workers and firms during employ-
ment.

From an economic perspective, unemployment insur-
ance facilitates “consumption smoothing” and better
job matches.

On the other hand, it may lead to less job search and
higher unemployment.



It also may distort workers towards unstable jobs and
lead to more on the job shirking.

There is a vast literature on unemployment insurance,
both theoretical and empirical.

We will discuss optimal unemployment insurance.



Optimal level of benefits

We focus first on the optimal level of benefits.

The standard measure of the genorosity of a UI system
is its replacement rate

r =
net benefit

net wage

A UI system reduces a worker’s gain from finding a new
job to w(1− r)

The replacement rate is determined by the level of UI
benefits.

A high replacement rate facilitates consumption smooth-
ing.

On the other hand, it creates moral hazard by making
unemployment more attractive.



The optimal benefit level must trade off consumption
smoothing and moral hazard.

The seminal analysis of the optimal level of UI benefits
is Baily (1978).

He showed that the optimal benefit level can be ex-
pressed as a function of a small set of parameters in a
static model.

His analysis was generalized by Chetty (2006).



Baily-Chetty Model

Consider a single worker who can be employed or un-
employed.

The worker’s income when employed is ye and when
unemployed is yu.

The worker’s wealth is W .

The worker is initially unemployed.

The probability the worker obtains employment is e
where e denotes his job search effort.

The disutility of effort e is ϕ(e) where ϕ′ > 0 and
ϕ′′ > 0.

The UI system pays a benefit b to the worker if he is
unemployed.



This benefit is financed by a tax t on the worker if he
is employed.

The system must run an (expected) balanced budget
so that

et = (1− e)b.

The worker’s utility from consumption is u(c) where
u′ > 0 and u′′ < 0.

The worker’s expected utility is

eu(W + ye − t) + (1− e)u(W + yu + b)− ϕ(e).



The first best

The first best problem is

max
(e,t,b)

eu(W + ye − t) + (1− e)u(W + yu + b)− ϕ(e)

s.t. t =
1− e
e

b

This assumes that the insurance agency can observe
and control the worker’s search efforts.

Obviously, this is unrealistic, but it provides a bench-
mark for analysis.

The first order conditions imply that

b = e(ye − yu)

and

u′(W + eye + (1− e)yu)(ye − yu) = ϕ′(e)



The solution involves perfect consumption smoothing;
i.e., ce = cu (consumption when employed equals con-
sumption when unemployed)

The effort choice balances the disutility with the income
gains.



The second best

Now assume that the insurance agency cannot observe
the effort level of the worker.

We then get a moral hazard problem.

In particular, the agency cannot fully insure the worker,
because he would have no incentive to undertake effort.

The worker’s problem is

max
e
eu(W + ye − t) + (1− e)u(W + yu + b)− ϕ(e)

Let e(b, t) denote the worker’s optimal effort choice and
let V (b, t) denote the worker’s indirect utility.

The second best problem is

max(b,t) V (b, t)

s.t. t = 1−e(b,t)
e(b,t) b



There is a convenient formula for the optimal benefit
level which we will now derive.

First solve the insurance agency’s budget constraint for
the tax as a function of the benefit; i.e., t(b).

Then consider the unconstrained problem

max
b
V (b, t(b))

The first order condition for the optimal benefit level is

∂V

∂b
= −∂V

∂t

dt

db

Using the Envelope Theorem, we obtain

∂V

∂b
= (1− e(·))u′(cu)

and
∂V

∂t
= −e(·)u′(ce)



Thus,

(1− e(·))u′(cu) = e(·)u′(ce)
dt

db
.

Using the fact that

t(b) =
1− e(b, t(b))
e(b, t(b))

b

we have that

dt

db
=

1− e(·)
e(·)

− b

e(·)2

de

db

=
1− e(·)
e(·)

(1 +
ε

e(·)
)

where ε is the elasticity of the probability of unemploy-
ment with respect to benefits; that is,

ε = − b

1− e(·)
de

db
.

Substituting the expression for dt/db back into the first
order condition, we obtain

u′(cu) = u′(ce)(1 +
ε

e(·)
)



or
u′(cu)− u′(ce)

u′(ce)
=

ε

e(·)
We can write the marginal utility gap as

u′(cu)− u′(ce) ≈ u′′(ce)(cu − ce)

Defining the coefficient of relative risk aversion as

γ(c) = −u
′′(c)c

u′(c)

we can further write

u′(cu)− u′(ce)
u′(ce)

≈ −u
′′(ce)(ce − cu)

u′(ce)

=
γ(ce)(ce − cu)

ce
.

We have therefore proved:



Proposition (Baily-Chetty Formula) The optimal un-
employment benefit level satisfies

γ(ce)
∆c

ce
≈ ε

e(·)
,

where ∆c = ce − cu is the drop in consumption during
unemployment.

Empirical work on UI can then be used to provide esti-
mates of the three key variables (γ(ce),

∆c
ce
, ε).



Optimal timing of benefits

The Baily-Chetty model sheds light on the determinants
of the optimal replacement rate, but does not capture
the dynamic features of UI.

In the U.S. unemployment insurance benefits are paid
out at a constant level for 6 months and then reduced
to zero.

In most countries, benefits are decreasing in duration,
although in Sweden they increase after a while.

Intuitively, it is not obvious how they should be struc-
tured dynamically.

Shavell and Weiss (1979) JPE were the first to pose and
analyze the optimal unemployment insurance problem
from a dynamic perspective.

We follow the treatment in Ljungqvist and Sargent
Chapter 21.



Shavell-Weiss Model

An unemployed worker orders stochastic processes of
consumption and search effort {ct, at}∞t=0 according to

E
∞∑
t=0

βt[u(ct)− at]

where β ∈ (0, 1) and u(·) is increasing, smooth and
strictly concave.

All jobs are alike and pay wage w per period forever.

If the worker exerts search effort a, he finds a job with
probability p(a).

The function p(·) is increasing, smooth, strictly con-
cave, and satisfies p(0) = 0.

Once the worker finds a job, a is equal to 0 from then
on and c is equal to w.



The worker has no savings and cannot borrow.

The insurance agency is the only source of consumption
smoothing across time and states.



Autarky

Suppose the worker has no unemployment insurance -
how would he behave?

Let V e be the expected sum of discounted utility of an
employed worker.

Clearly,

V e =
u(w)

1− β

Let V u be the expected present value of utility for an
unemployed worker. Then,

V u = max
a≥0
{u(0)− a+ β[p(a)V e + (1− p(a))V u]}

The first order condition is

βp′(a)[V e − V u] ≤ 1 ( = if a > 0).



If Vaut and aaut > 0 denote the solutions to the autarky
problem, we have that

Vaut = u(0)−aaut +β[p(aaut)V
e + (1− p(aaut))Vaut].

and
βp′(aaut)[V

e − Vaut] = 1

These solutions are straightforward to compute....



The first best

Consider the unemployment insurance problem when
the insurance agency can observe and control both
the worker’s consumption and his search effort.

Assume the insurance agency wants to design an
unemployment insurance contract to give the worker
discounted expected value V > Vaut.

The agency wants to provide V in the most efficient
way; that is, to minimize expected discounted costs of
providing V .

Let C(V ) denote the minimized expected discounted
costs.

This will be a strictly convex function of V because of
risk aversion.



Given V , the agency assigns a first period consumption-
effort pair (c, a) and a promised continuation value V u

should the worker not find employment.

Thus, we think of V as a state variable and (c, a) as
the policy functions.

In this way, we can pose the problem recursively.

The triple (c, a, V u) will be functions of V and will
satisfy the Bellman equation

C(V ) = minc,a,V u{c+ β(1− p(a))C(V u)}
s.t. V = u(c)− a+ β[p(a)V e + (1− p(a))V u]

The constraint is known as the “promise-keeping” con-
straint - it guarantees that the unemployed worker’s
future payoff is V .

V e - the payoff from being employed is as defined
above.



Letting θ be the multiplier on the promise keeping con-
straint, the first order conditions for (c, a, V u) are given
by:

θ =
1

u′(c)

C(V u) = θ[
1

βp′(a)
− (V e − V u)]

C ′(V u) = θ

Moreover, note that by the Envelope Theorem

C ′(V ) = θ

The third and fourth condition together with the strict
convexity of C(·) imply that V u = V

Applying this repeatedly, we see that the worker’s con-
tinuation value is held constant during his entire spell
of unemployment.



Substituting in V u = V , we see that c and a are con-
stant during the entire unemployment spell.

Thus, the worker’s consumption is “fully smoothed”
during the unemployment spell.

But the worker’s consumption is not smoothed across
states of employment and unemployment assuming that
V < V e.



The second best

Assume that the agency cannot observe a, but it can
still observe and control c.

The problem is now

C(V ) = minc,a,V u{c+ β(1− p(a))C(V u)}
s.t. V = u(c)− a+ β[p(a)V e + (1− p(a))V u]

βp′(a)[V e − V u] ≤ 1 ( = if a > 0).

The additional constraint is an “incentive constraint”
which reflects the fact that the worker will choose his
search effort optimally.

Assume that the function C(V ) continues to be strictly
convex - this is now an assumption, which may not be
satisfied.

Letting η be the multiplier on the incentive constraint,
we have the first order conditions for (c, a, V u) are given
by:

θ =
1

u′(c)



C(V u) = θ[
1

βp′(a)
− (V e − V u)]

−ηp
′′(a)

p′(a)
(V e − V u)

= −ηp
′′(a)

p′(a)
(V e − V u)

C ′(V u) = θ − η p′(a)

1− p(a)

Note that we have used the incentive constraint to sim-
plify the second condition.

Moreover, it is still the case that by the Envelope The-
orem

C ′(V ) = θ

Since the second equation implies that η > 0, the third
and fourth equation implies that

C ′(V ) > C ′(V u).



It follows that, under the assumed strict convexity, we
must have that V > V u implying that the worker’s
continuation value is decreasing during his entire spell
of unemployment.

Since V u is decreasing through time, it follows that
the worker’s consumption is decreasing over his spell of
unemployment and that his search effort is increasing.

The duration dependence of benefits is designed to pro-
vide incentives to search.



Example

Assume that a period is a week and set β = 0.999

Assume further that

u(c) =
c1−σ

1− σ

and let σ = 0.5.

Let w = 100 and

p(a) = 1− exp(−ra)

where r is such that p(aaut) = 0.1.

Figure 21.2.1 depicts the replacement ratio c/w and the
search effort as a function of weeks of unemployment.



Further research

One weakness of this model is that it assumes that
unemployed workers have no assets and can do no con-
sumption smoothing of their own.

It may be reasonable to assume that unemployed work-
ers cannot borrow, but it seems that they should be able
to engage in self-insurance by accumulating a buffer
stock of savings.

When they become unemployed, they will start decu-
mulating these assets to smooth their consumption.

This may suggest that benefits should not fall with the
duration of unemployment, because the longer a worker
is unemployed the lower will be his asset levels.

For a formal exploration of this argument see “Asset
Based Unemployment Insurance” IER 2012 by Pontus
Rendahl.



He shows that benefits should be conditional on wealth.

As wealth levels fall over the duration of unemployment,
benefit levels rise.

See also Shimer and Werning “Liquidity and Insurance
for the Unemployed” AER 2008 for a related analysis
in a different model.

On the empirical front, you might also want to read
Chetty “Moral Hazard vs Liquidity in Unemployment
Insurance” JPE 2008.

He is concerned with the classic question of whether
unemployment insurance leads to longer spells of un-
employment because of moral hazard.

There is certainly plenty of evidence that larger unem-
ployment benefits lead to longer unemployment spells.

But he argues that this is coming primarily from a “liq-
uidity effect” rather than a “moral hazard effect”.



Under the moral hazard effect, people cut back job
search efforts because higher benefits make the unem-
ployed state more attractive.

Under the liquidity effect, higher benefits lead people
to set a higher reservation wage because they are no
longer so desperate to get cash.

The liquidity effect relies on the fact that people cannot
perfectly smooth consumption due to imperfect credit
markets.

Finally, there is a bunch of work on the distortions aris-
ing from the fact that the payroll tax which finances UI
is only partially experience-rated.

That is, the payroll tax (which is levied on employers)
rises as firms have more layoffs, but not on a one-for-
one basis.

This partial experience rating subsidizes layoffs.



2. Social security

The U.S. Social Security program taxes workers to pro-
vide income support for the elderly.

It is a pay-as-you-go system as opposed to a fully funded
system

Social security is the largest single source of income for
the elderly.

2/3 of the elderly derive more than 1/2 of their income
from Social security

For 1/5 of the elderly, social security is the only source
of income.

To be eligible to receive Social security, individuals must
have worked and paid payroll taxes for 10+ years and
must be 62 or older.



Eligible individuals receive an annuity payment that
lasts until death which is calculated as a function of
average lifetime earnings.

To analyze the optimal level of social security benefits,
one needs a theory of why the program is necessary in
the first place.

Feldstein (1985) provides an analysis under the assump-
tion that the program is necessary because some indi-
viduals are myopic and do not save enough.

On the other hand, social security reduces the savings
of the non-myopic.

Since savings are productive and social security benefits
are not, this creates a distortion.

The optimal level of benefits trades off the benefit of
helping the myopic with the costs of distorting the sav-
ings of the non-myopic.



See also Krueger and Kubler (2005) AER who view the
function of social security as spreading of aggregate risk
across generations.

Hansson and Stuart (1989) AER take a Samaritan’s
Dilemma perspective.



Feldstein-style model

The following model is a simplified version of Feldstein’s
and draws on Andersen and Bhattacharya, Economic
Theory 2010.

The model is infinite horizon, overlapping generations.

Periods are indexed by t = 0, ....,∞.

Individuals work in the first period of their lives and
retire in the second.

The size of the population is constant and normalized
to 1.

Individuals have one unit of labor which they supply
inelastically.

The wage rate is w and is exogenous.



Savings yield an exogenous return ρ ≥ 0; i.e., a dollar
saved in the first period of life, yields 1+ρ in the second.

The government operates a pay-as-you-go social secu-
rity system.

It taxes labor earnings at rate θ and provides the aged
a benefit b.

The government’s budget must balance in each period,
so that

b = θw.

The only decision individuals make is how much to save.

Individuals’ true lifetime utility is

ln c1 + ln c2



where c1 is consumption when young and c2 is con-
sumption when old.

There are two types of individuals: myopes and life-
cyclers.

The fraction of myopes in the population is µ.

Myopes do no saving and life-cyclers save so as to max-
imize lifetime utility.

Life-cyclers solve the problem

max
s≥0

ln (w(1− θ)− s) + ln(s(1 + ρ) + b).

The solution is

s(θ, b) =

{
0 if w(1−θ)

2 ≤ b
2(1+ρ)

w(1−θ)
2 − b

2(1+ρ) otherwise
.



Observe that higher social security benefits reduces sav-
ing of life-cyclers

∂s

∂b
= − 1

2 (1 + ρ)
< 0

If saving is productive (i.e., ρ > 0), this crowding out
creates an aggregate cost for the economy, since social
security is not productive.

Note also that when the government budget constraint
is taken in to account, the condition for savings to be
positive

w(1− θ)
2

>
b

2 (1 + ρ)
,

is equivalent to

w

(
1 + ρ

2 + ρ

)
> b.



Letting v(θ, b) denote the life-cycler’s indirect utility, by
the Envelope Theorem, we have that

∂v(θ, b)

∂b
=

1

s(θ, b)(1 + ρ) + b

and
∂v(θ, b)

∂θ
=

−w
w(1− θ)− s(θ, b)

Note that

dv( bw , b)

db
=

1

s( bw , b)(1 + ρ) + b
− 1

w − b− s( bw , b)

=
1

(w(1+ρ)
2 − ρb

2 )
− 1(

w
2 −

ρb
2(1+ρ)

)
= − ρ

(w(1 + ρ)− ρb)
< 0

Thus, higher social security benefits reduce the lifetime
utility of life-cyclers assuming that ρ > 0.

Intuitively, this is because they crowd out productive
savings.



Optimal social security benefits

Using the fact that the government budget constraint
implies that θ = b/w, we can write the government’s
problem as

max
b
µ [ln (w − b) + ln b] + (1− µ)v(

b

w
, b).

Using the expression for dv( bw , b)/db derived above, the
first order condition is

µ

[
1

b
− 1

w − b

]
− (1− µ)

[
ρ

(w(1 + ρ)− ρb)

]
= 0

Using the fact that

1

b
− 1

w − b
=

w − 2b

b(w − b)
,

the optimal benefit level is such that

µ
w − 2b

b(w − b)
= (1− µ)

[
ρ

(w(1 + ρ)− ρb)

]
.



This implies that the optimal benefit level satisfies

µ (w − 2b) (w(1 + ρ)− ρb) = ρ(1− µ)b(w − b).

This is a quadratic equation that can be solved for a
closed form solution (Problem Set?).

When everyone is a myope (µ = 1), then b = w/2.

When everyone is a life-cycler (µ = 0), then assuming
ρ > 0, b = 0.

If ρ = 0, then there is no cost to the life-cyclers of
raising benefits, so that b = w/2.

Assuming ρ > 0, then it is clear from the first order
condition, that as we increase the fraction of myopes,
the optimal benefits must increase.



The model therefore nicely illustrates the idea that the
optimal level of social security trades off the benefit
of helping the myopic with the costs of distorting the
savings of the non-myopic.

Of course, the model does not explain why the gov-
ernment uses a pay-as-you-go scheme as opposed to a
fully-funded scheme.

Under a fully-funded system, the government saves on
behalf of the citizens and the costs of distorting savings
are avoided.



3. Disability insurance

Golosov and Tysvinsky JPE 2006 provide a nice analysis
of optimal disability insurance.

In the U.S., the government provides citizens with dis-
ability insurance through the social security system.

The social security disability insurance program pro-
vides income to a large number of citizens (6 million)
and costs a huge amount of money ($61 billion in
2001).

G & T’s paper first shows how a dynamic optimal social
insurance mechanism can be implemented with a sim-
ple, realistic set of tax instruments - a so-called “asset-
tested disability system”.

They then parametrize their model and numerically eval-
uate features of the optimal system and the welfare
gains from implementing their system (relative to a styl-
ized version of the current US system).



We will focus on the first part of the paper - but the
second part is also interesting.

The paper is part of the New Dynamic Public Finance
which we have already discussed.



Golosov-Tysvinsky model

Consider an individual who lives for T periods and has
preferences defined over lifetime consumption and labor
represented by

E
T∑
t=1

βt−1[u(ct) + v(lt)]

where E is the expectation operator, β the discount
rate and ct and lt are consumption and labor in period
t

u is increasing and strictly concave and v is decreasing.
Moreover, v(0) = 0.

If the individual becomes disabled at time t his produc-
tive ability is then equal to zero and he cannot work.

Moreover, his ability stays at zero for the rest of his life.



If the individual is able his productive ability in period
t is θt.

The sequence {θ1, ..., θT } is known at date 1.

Let
π1 = Pr(able at t = 1)

πt = Pr(able at t| able at t− 1) t ≥ 2

Πs,t = Pr(able at t| able at s− 1)

= πs · · · · · ·πt

Πt = Pr(able at t) t ≥ 1

Π0 = 1

Let ct denote consumption of the individual at age t if
he is able and let lt his labor supply.

Let xst denote consumption of the individual at age t if
he became disabled at s ≤ t.



The government cannot observe whether the individual
is disabled but can observe income.

The individual learns whether or not he is able at the
beginning of each period.

The interest rate R is exogenous and satisfies β =
1/(1 +R).

The wage rate is exogenous and equal to w.

An allocation of consumption and labor (c, l, x) is fea-
sible for the individual if the expected present value of
consumption is less than the expected present value of
output; that is,

T∑
t=1

βt−1Πtct +
T∑
s=1

Πs−1(1− πs)
T∑
t=s

βt−1xst

≤
T∑
t=1

βt−1Πtwθtlt



Allocations must also respect incentive compatability
constraints because the age at which the individual be-
comes disabled is private information.

Incentive-compatability constraints require that in each
period the expected utility of working is higher than the
utility of claiming disability.

Thus, for all s = 1, ..., T

u(cs) + v(ls) +

T∑
t=s+1

βt−sΠs+1,t[u(ct) + v(lt)]

+
T∑

t=s+1

Πs+1,t−1(1− πt)
T∑
i=t

βi−su(xti)

≥
T∑
t=s

βt−su(xst )



The social planner’s problem is

max
(c,l,x)

T∑
t=1

βt−1Πt[u(ct) + v(lt)]

+

T∑
s=1

Πs−1(1− πs)
T∑
t=s

βt−1u(xst )

subject to the feasibility constraint and the incentive
constraints.



Characterization of the optimum

The first best

If there are no incentive constraints, the optimal solu-
tion is such that for all t, s (s ≤ t)

ct = xst = c

and
wu′(ct) = −v′(lt)/θt for all t

Thus, the first best has full insurance (consumption
smoothing) and the earnings of the individual when able
optimally balance the marginal disutility of labor with
the marginal benefit of consumption.



The second best

Result 1: In the second best solution, the following
properties are satisfied: (i) the feasibility constraint
holds with equality; (ii) the incentive constraints all
hold with equality; and (iii) in each period, ct > xtt.

These properties are all intuitive.

Result 2: In the second best solution,

wu′(ct) = −v′(lt)/θt for all t.

Thus, the consumption-labor margin is undistorted when
the individual is able.

This is analogous to the result from the two type Mir-
rlees model concerning the labor supply of high types.



Result 3: In the second best solution, for each period
t < T

1

u′(ct)
= [

πt+1

u′(ct+1)
+

1− πt+1

u′(xt+1
t+1)

]

This is the Inverse Euler Equation for the problem.

It has the following important implication:

Result 4: In the second best solution, for each period
t < T such that πt+1 ∈ (0, 1)

u′(ct) < πt+1u
′(ct+1) + (1− πt+1)u′(xt+1

t+1)

This result follows from Jensen’s Inequality and Result
3.

It implies that the allocation of consumption across
time is distorted for the able.



In particular, the marginal utility of consumption in the
current period is lower than the expected marginal util-
ity of consumption in the next period.

This means that the individual is consuming too much
in the current period relative to the first best or, equiv-
alently, he is saving less than the first best amount.

This intertemporal distortion of savings is caused by the
incentive constraints.

If the individual saves more from period t to t+ 1 then
because the marginal utility of consumption is decreas-
ing, it is harder to prevent him form masquerading as
disabled.

Accordingly, it is desirable to deter savings by taxation
or even asset limits.

We already mentioned this point when we discussed the
New Dynamic Public Finance.



Result 5: In the second best solution, for all s, t and
t′

xst = xst′

Thus, consumption is constant once the individual be-
comes disabled.

This is because all uncertainty is resolved once the in-
dividual becomes disabled.



Implementing the optimum

How can the government decentralize the second best
optimal allocation?

Golosov and Tysvinski show that the government can
use what they term an asset-tested disability insurance
system.

The system has two key features:

(i) disability transfers depend upon the length of pre-
disability work history.

(ii) disability transfers are paid only to individuals whose
assets are below a pre-specified minimum.

Formally, the implementation problem is to design a
system of taxes and disability transfers so that compet-
itive equilibrium allocations are second best.



First we need to define what is a competitive equilib-
rium given a tax/transfer system?

Definition 1: Given a tax system {τt(·)} allocations
of consumption, labor supply, and savings (c̃, l̃, x̃, k̃)
constitute a competitive equilibrium if they solve the
following problem:

max(c,l,x,k)

∑T
t=1 β

t−1Πt[u(ct) + v(lt)]

+
∑T

s=1 Πs−1(1− πs)
∑T

t=s β
t−1u(xst )

s.t. ∀t ct + kt ≤
wθtlt + (1 +R)kt−1 + τt({θili, ki−1}ti=1)
∀t ≥ s xst + kst ≤ (1 +R)kst−1+

τt(({θili}s−1
i=1 , {θili = 0}ti=s), ({ki−1}si=1, {ksi }Ti=s))

where kss−1 = ks−1 and feasibility is satisfied.

Then they say that the tax system {τt(·)} implements
the second best optimal allocation (c∗, l∗, x∗) if (c∗, l∗, x∗)
is equal to the competitive equilibrium allocation just
defined.

The formal definition of an asset-tested disability insur-
ance system is as follows:



Definition 2: An asset-tested disability insurance sys-
tem (k, S, Ta) consists of: (i) a sequence of asset tests
k(i) i = 1, ..., T ; (ii) a sequence of lump-sum transfers
of the form Sd(t, i) = Td(i) − wθtlt, 1 ≤ i ≤ t ≤ T ,
where Sd(t, i) is the transfer received in period t by a
consumer who became newly disabled in period i with
assets not exceeding k(i); and (iii) a lump sum tax Ta
that is paid each period by a consumer who is still work-
ing or who had assets exceeding k(i) when he declared
disability.

Theorem: For any second best optimal allocation
(c∗, l∗, x∗), there exists an asset-tested disability insur-
ance system (k, S, Ta) that implements it.

Part (i) describes the asset tests - basically, if the indi-
vidual becomes disabled in period i he must have assets
below k(i) in order to get disability benefits in the fu-
ture.

Part (ii) describes the disability benefits.



If the individual declares disability in period i and then
earns in period t ≥ i then his earnings are subject to a
100% tax.

So, obviously, under this scheme, individuals who have
declared disability will not work again (even if they
could).

The disability benefit an individual receives depends
upon the date at which he first stopped earning.

Part (iii) describes the tax that the able pay.

This tax is also paid by those who are disabled whose
assets exceed the limit.

Under this system, individuals choose to save only up
to the assets limit.

Saving more will eliminate their ability to benefit from
the disability insurance.



When they become disabled, they claim disability and
receive the transfer Td(i) in each period for the rest of
their lives.

They also supplement their transfer by decumulating
their assets.

The asset limits are key to implementing the second
best optimal allocation.

Golosov and Tysvinski show in a two period example
that the second best optimal allocation cannot be im-
plemented with a linear tax on savings.

Again, we discussed this issue when we discussed the
New Dynamic Public Finance.



VII. State and Local Public Finance

Around 50% of government spending in the US is ac-
counted for by state and local governments.

State and local governments provide a host of services,
including education, police, parks, and roads.

State and local governments differ from national gov-
ernments because citizens can move freely between states
and localities.

This raises a host of interesting issues.

These lectures will introduce a number of basic ideas
from the state and local literature.

We will begin by introducing the classic paper of Tiebout
JPE (1956) and the literature the paper inspired.

Next we will discuss property taxation and zoning.



After that we will discuss the distributional implications
of local service provision.

Finally, we will discuss the idea of capitalization.



1) The Tiebout model

The basic normative issue in state and local public fi-
nance is should we have local governments and, if so,
what should they provide.

Tiebout argued that a system of local governments pro-
viding local public goods financed by local taxes has an
efficiency advantage over a more centralized system.

A local public good is one which benefits only the local
community rather than the community as a whole.

For example, local radio vs national radio; police vs
national defense; local hospitals vs cancer research.

Tiebout argued that local public goods differed from
public goods in an important way.



Namely, that if they were provided via a system of
competing local governments, citizens could “vote with
their feet”.

As Tiebout saw it, the fundamental problem with public
goods was that government would be very unlikely to
choose optimal levels.

This is because they would have no way of knowing
what peoples’ preferences were.

However, with local public goods and local govern-
ments, local competition would lead to optimal choices
because people could “vote with their feet”.

If a citizen-voter does not like the level of national de-
fense spending in a community, there is not much he
can do to express his displeasure.

He can vote out the incumbent government, but this is
a crude tool because there are so many issues on which
to base his vote.



If he does not like the level of education spending in his
community, he can vote with his feet and move.

This leads to two conclusions: (i) people can sort into
communities where the public good - tax mix reflects
their preferences; and (ii) the fact that people can move
disciplines the behavior of local governments.

We can illustrate the idea diagrammatically.

Tiebout argued informally that under the following seven
assumptions, this system of competition would lead to
efficient provision:

Assumption 1: no moving costs

Assumption 2: full information

Assumption 3: large number of communities



Assumption 4: no locational constraints created by
employment

Assumption 5: no spillovers between communities

Assumption 6: average cost of providing public ser-
vices as a function of population is U-shaped - implying
there is a cost minimizing population size

Assumption 7: communities with population sizes be-
low (above) the cost minimum seek to expand (con-
tract).

Under these assumptions, efficient provision of public
services would prevail, Tiebout asserted.

All the communities would be optimally sized, and citizen-
voters would live in communities that provided public
good-tax bundles that were optimal for them.



Tiebout argued that these assumptions were not much
more extreme than those underlying perfect competi-
tion in private goods markets (no frictions, full infor-
mation, no monopoly, etc).

Tiebout’s argument is important because the forces
that he identifies are clearly realistic.



Reaction to Tiebout

Tiebout’s argument was far from rigorous.

It was not clear precisely what he was assuming about
most of the main ingredients of the argument.

However, the importance of the underlying idea spawned
a large literature trying to make it more precise and un-
derstand exactly the assumptions that were necessary
for the system of local competition that he identified to
actually achieve efficient provision of local public goods.

The models used in this literature are so-called Tiebout
models.

They are static Arrow-Debreu general equilibrium mod-
els which in addition have distinct regions of habitation.



Each region has a government which provides local pub-
lic goods and collects taxes to pay for them.

There is perfect consumer mobility between regions.

Consumers are fully informed about prices, taxes and
public services in each region and choose to live in the
region that provides them with the highest utility.

Governments are assumed to have varying objectives
- catering to the median voter; maximizing property
values; maximizing tax surplus; etc.

An allocation in a Tiebout model specifies: a consump-
tion bundle for each consumer; a production plan for
each firm; a public good bundle for each regional gov-
ernment; and a region of habitation for each consumer.

A Tiebout equilibrium consists of an allocation; a price
for each commodity; and a tax system for each region
such that:



(i) consumers are choosing their consumption bundles
optimally

(ii) consumers are choosing their regions of habitation
optimally (taking as given taxes and public good levels)

(iii) firms maximize profits

(iv) markets clear

(v) each regional government balances its budget

(vi) each regional government’s tax and public goods
plan maximizes its objective (whatever that is)

Study of these models led researchers to realize that
Tiebout’s model of competing local governments does
not have the same efficiency properties as market com-
petition except under very restrictive assumptions.



Bewley (1981)

A famous paper which points this out is Bewley (1981)
who provides a long list of counter-examples to Tiebout’s
claims.

He then provides some assumptions under which Tiebout’s
argument is correct.

Lets look at some of his examples to see the sort of
issues that come up

Example 1: (Economies of Scale)

There are 2 consumers and 2 regions.

There is a single public good g and labor l.

Each consumer is endowed with a unit of labor and
cares only about his public good consumption.



To produce 1 unit of the public good requires 1 unit of
labor; thus, in each region j

gj = lj

where gj is the level of the public good in region j and
lj is the labor used.

The following situation describes a Tiebout equilibrium.

The price of the public good and of labor is 1.

There is a single consumer in each region.

The tax in each region is equal to 1 and the government
uses the tax revenues to provide 1 unit of the public
good.

In equilibrium each consumer is indifferent between liv-
ing in either region.



Each government is using its revenues optimally, given
its citizen’s tastes.

This equilibrium is inefficient because both consumers
would be better off if they lived in the same region.

The fundamental reason for the inefficiency is that peo-
ple do not take into account the economies of scale that
result when they move into a region.



Example 2: (Mismatched Consumers)

There are 4 consumers (A,B,C,D) and 2 regions.

There are four types of public services (gA, gB, gC , gD)
and labor l.

Each consumer is endowed with 1 unit of labor

The public services are produced using labor and the
production technology is such that

nj(gAj + gBj + gCj + gDj) = 2lj

where gkj is the amount of service k provided in region
j, nj is the number of consumers in region j and lj is
the quantity of labor used in region j.

Note here that the resources used to produce the public
service are increasing in the number of users.

This illustrates the important distinction between public
services and public goods.



The consumers’ utilities are

uA = 2gAj + gBj

uB = gAj + 2gBj

uC = 2gCj + gDj

uD = gCj + 2gDj

The following is a Tiebout equilibrium. Consumers A
and C live in region 1 and Consumers B and D live in
region 2

(gA1, gB1, gC1, gD1) = (1, 0, 1, 0) and
(gA2, gB2, gC2, gD2) = (0, 1, 0, 1)

The price of each type of public service and of labor is
1. The tax in each region is equal to 1.

Note that no consumer wishes to move.

The governments are choosing taxes and public services
optimally given their citizens’ preferences.



However, this equilibrium is not efficient.

Consider the following alternative allocation.

Consumers A and B live in region 1 and Consumers C
and D live in region 2

(gA1, gB1, gC1, gD1) = (1, 1, 0, 0) and
(gA2, gB2, gC2, gD2) = (0, 0, 1, 1)

The price of each type of public service and of labor is
1.

The tax in each region is equal to 1.

The difficulty is that consumers are mismatched and
cannot sort themselves out by migration alone.

Bewley notes that the inefficiencies exhibited in these
two examples would not arise if local governments set
public good levels anticipating the migration changes
they would induce.



But even with those governments, problems still arise.

If local governments do set public good levels antici-
pating migration, then they must be given an objective
function.

What is plausible? Population maximization? Property
value maximization? Profit maximization?



Example 3: (Anonymous taxation)

There are 2 consumers (A and B) and 2 regions.

There is a single public good g and labor l.

Each consumer is endowed with a unit of labor.

To produce 1 unit of the public good requires 1 unit of
labor; thus, in each region j

gj = lj

where gj is the level of the public good in region j and
lj is the labor used.

The consumers’ utilities are

uA = g

uB = g − 3l

The following situation describes a Tiebout equilibrium.



A lives in Region 1 and B lives in Region 2.

The tax in Region 1 is equal to 1 and the government
uses the tax revenues to provide 1 unit of the public
good.

The tax in Region 2 is equal to 0 and the government
provides no public good.

However, the situation is clearly inefficient, because B
would be better off if he lived in region 1 and payed no
taxes.

But there is no way to achieve efficiency even if the
governments could anticipate population changes.

Suppose that one government set a tax τ and provided
2τ units of the public good hoping to attract both con-
sumers.

Then A would require that τ > 1/2 and B would re-
quire that 2τ − 3τ > 0.

Hence there is no way of getting the consumers to live
together, given that they have to pay the same taxes.



Sufficient Conditions

Bewley goes on and on, in similar vein.

He then concludes his analysis on a more positive note
by identifying some assumptions under which Tiebout’s
argument works.

His sufficient conditions are:

(i) Public services as opposed to public goods.

(ii) As many regions as there are consumer types.

(iii) Profit maximizing anticipatory governments but
must all make zero profits in equilibrium.

(iv) Free trade between regions.

Under these conditions, a Tiebout equilibrium exists
and it is efficient.

But Bewley, argues - this is scarely convincing since it
does not seem a remotely sensible model.



2) Property Taxation and Zoning

The primary source of revenue for U.S. local govern-
ments has historically been the property tax.

Given this, the efficiency properties of a system of local
governments financing public services via property taxes
have long been of interest.

The literature identifies two sources of distortions from
property taxation.

First, property taxation will distort housing choices,
leading households to consume too little housing.

Second, property taxation will distort public service choices
because households do not face the true tax price for
services.

Hamilton (1975) argued that if local governments can
implement zoning ordinances specifying minimum hous-
ing qualities, these distortions will not arise.



Property taxes will be “benefit taxes” - non-distortionary
user fees for public services.

Coate (2010) argues that while this is in principle pos-
sible, local governments are unlikely to choose zoning
ordinances in the right way.

Property taxes may indeed be benefit taxes, but zoning
ordinances will distort housing choices, leading house-
holds to consume too much housing.

This lecture will illustrate these ideas in the dynamic
Tiebout model developed by Coate (2010).



Coate’s model

Consider a geographic area consisting of two commu-
nities, indexed by i ∈ {1, 2}.

Time is infinite, with periods indexed by t ∈ {0, ....,∞}.

A population of size 1 resides in the area, but in each
period new households arrive and old ones leave.

A household residing in the area in any period will need
to remain there in the subsequent period with proba-
bility µ.

The only way to live in the area is to own a house in
one of the communities.



Housing

Houses come in two types: large and small.

Houses are durable, but a fraction d ∈ (0, 1 − µ) of
the stock in each community is destroyed at the end of
each period.

New houses can be built and the cost of building a
house of type H ∈ {L, S} is CH where CL > CS .

Each community has enough land to accomodate a
population of size 1 and land has no alternate use.

The stock of old houses of type H in community i at
the beginning of a period is OHi and new construction
is NHi.

New construction is completed at the beginning of each
period and new and old houses are perfect substitutes.



Public services

A public service is provided in each community.

The service level in community i is gi.

The cost is cgi per household.



Households

Each household receives a per-period income y.

When living in the area, households have preferences
defined over housing, services, and consumption.

Households differ in their preferences for large houses,
measured by θ.

A type θ household with consumption x and services g
obtains a period payoff of x + B(g) + θ if it lives in a
large house and x+B(g) otherwise.

When not living in the area, a household’s payoff just
depends on its consumption.

Households discount future payoffs at rate δ and can
borrow and save at rate 1/δ − 1.



Housing markets

Housing markets open at the beginning of each period.

Demand comes from new households moving into the
area and remaining residents who need new houses or
who want to move.

Supply comes from owners leaving the area, residents
who want to move, and new construction.

New construction is supplied by competitive construc-
tion firms.

The price of houses of type H in community i is PHi.



Public finance

Service provision in community i is financed by a tax τi
on the value of property

∑
H PHi(OHi +NHi).

Community i must balance its budget in each period
implying that

τi
∑
H

PHi(OHi +NHi) = cgi
∑
H

(OHi +NHi).

The majority-preferred service level is implemented.



Timing

Each period begins with a stock of old houses O =
(OL1, OS1, OL2, OS2) of aggregate size 1− d.

Existing residents learn whether they will remain in the
area and new households arrive.

Housing markets open, prices P = (PL1, PS1, PL2, PS2)
are determined, and new construction

N = (NL1, NS1, NL2, NS2)

takes place. Aggregate new construction is d.

Knowing P and O + N, residents choose services g1

and g2.

At the end of the period, a fraction d of the housing
stock is destroyed so next period’s stock is O′ = (1 −
d)(O + N).



Equilibrium

The model has a recursive structure with the stock of
old houses the aggregate state variable.

An equilibrium consists of a price rule P(O), a new con-
struction rule N(O), public service rules (g1(O), g2(O)),
and, for each household type, a value function and a
housing demand function, such that three conditions
are satisfied.

First, household optimization.

Second, housing market equilibrium.

Third, majority rule.



Household optimization

Households only have one decision to make.

If they need to reside in the area, they must choose
what type of house to buy (large or small) and in which
community (1 or 2).

They will take into account their preference for large
houses as measured by θ, the current and future price of
houses, the taxes they will pay, and the level of services
that are provided.



Housing market equilibrium

Since new construction is supplied by competitive con-
struction firms and land is free, the supply of type H
houses is perfectly elastic at price CH .

The price of type H houses in community i will equal
CH if new construction takes place, but can fall below
CH if there is no new construction.

Prices must be such that households buying type H
houses are indifferent between communities.



Majority rule

The preferred service level for residents of typeH houses
in community i is

g∗(ρHi(O)) = arg max
g
{B(g)− ρHi(O)g},

where ρHi(O) is the tax price of services faced by these
residents.

This tax price is

ρHi(O) =
cPHi(O)

PLi(O)λi(O) + PSi(O)(1− λi(O))
,

where λi(O) is the fraction of post-construction houses
that are large.

The majority-preferred level is

gi(O) =

{
g∗(ρLi(O)) if λi(O) ≥ 1/2
g∗(ρSi(O)) if λi(O) < 1/2

.



Equilibrium steady states

Given an equilibrium, a stock of old houses is a steady
state if new construction is such as to maintain the
stock constant.

Proposition 1 If O∗ is a steady state, the fraction of
large houses in each community is the same; that is,
λ1(O∗) = λ2(O∗) = λ∗. If λ∗ ≥ 1/2, the public ser-
vice level in each community is g∗L ≡ g∗(

cCL
CLλ∗+CS(1−λ∗))

and households live in large houses if

θ ≥ (1−δ(1−d))(CL−CS)+
c(CL − CS)

CLλ∗ + CS(1− λ∗)
g∗L.

If λ∗ < 1/2, the public service level is
g∗S ≡ g∗( cCS

CLλ∗+CS(1−λ∗)) and households live in large
houses if

θ ≥ (1−δ(1−d))(CL−CS)+
c(CL − CS)

CLλ∗ + CS(1− λ∗)
g∗S .



Sketch of Proof: If O∗ is an equilibrium steady state,
then, N(O∗) = dO∗/(1− d).

Since O∗Hi > 0 for all Hi, it must be the case that
there is new construction of both types of houses in
both communities.

Given perfectly elastic supply, housing prices must equal
construction costs so that P(O∗) = (CL, CS , CL, CS).

It must also be the case that the fraction of large houses
in each community is the same; that is, λ1(O∗) =
λ2(O∗) = λ∗.

For if, say, community 1 had a greater fraction of large
houses, the public service surplus enjoyed by large house
owners in community 1 would be higher than in com-
munity 2.

Since the price of houses is the same, no-one would buy
a large house in community 2.



Since both house prices and the fraction of large houses
are the same across the two communities, the service
levels and taxes are also the same.

If a majority of households own large houses (λ∗ ≥
1/2), then, the public service level will be g∗L and house-
holds live in large houses only if their preference exceeds
the stated expression.

If a majority of households own small houses (λ∗ <
1/2), the public service level is g∗S and households live in
large houses only if their preference exceeds the stated
expression. �



Property tax distortions

The equilibrium steady states are inefficient.

From an efficiency perspective, households should live
in large houses if

θ ≥ θe ≡ (1− δ(1− d))(CL − CS).

The steady state fraction of large houses is therefore
too low.

The efficient level of public services is

ge ≡ g∗(c) = arg max {B(g)− cg} .

Public services are therefore under-provided if large home
owners are a majority and over-provided otherwise.



Zoning

Suppose from period 0 onwards, one community en-
forces a zoning ordinance requiring all newly constructed
houses to be large.

Proposition 2 In steady state, all houses in the zoned
community are large and all houses in the unzoned com-
munity are small. The public service level in each com-
munity is ge and households live in the zoned commu-
nity only if θ ≥ θe.

This is Hamilton’s argument at work.



Sketch of Proof: Suppose that community 1 is the
zoned community.

If O∗ is a steady state, then, under zoning, it must be
the case that O∗S1 = 0 and hence λ1(O∗) = 1.

It must also be the case that O∗L2 = 0 and hence that
λ2(O∗) = 0.

To see why, suppose, to the contrary, that O∗L2 > 0.

Then it must be the case that the steady state price of
large houses in both communities is CL.

Since the price of small houses in community 2 is CS ,
the tax price of public services is lower for large house
owners in community 1.

But this means public service surplus enjoyed by large
house owners in community 1 is higher than in commu-
nity 2 which would mean no large house owner would
buy in community 2.



Since PL1(O∗) = CL and λ1(O∗) = 1 and PS1(O∗) =
CS and λ2(O∗) = 0 it follows that

(g1(O∗), τ1(O∗)) = (g∗(c),
cg∗(c)

CL
)

and that

(g2(O∗), τ2(O∗)) = (g∗(c),
cg∗(c)

CS
).

It follows that a household of type θ will prefer living
in a large house in community 1 to a small house in
community 2 if

θ +B(g∗(c))− cg∗(c)
CL

CL − CL + δ(1− d)CL

≥ B(g∗(c))− cg∗(c)
CS

CS − CS + δ(1− d)CS

or, equivalently, if their preference θ exceeds θe. �



Benefit taxation

Observe that in the zoning steady state, the property
taxes paid by households in both communities equal
cg∗(c).

Each household therefore pays a tax equal to the cost
of the services it consumes.

Property taxes are therefore benefit taxes.



Endogenous zoning

The above analysis assumes that one community has
zoning.

In reality zoning decisions are made by the households
who reside in the community.

If communities could choose whether to implement zon-
ing, would the efficient outcome result?



To endogenize zoning, suppose at the end of each pe-
riod, residents vote whether to impose a zoning ordi-
nance for the next period.

The vote takes place before housing stock is destroyed,
so that all voters own houses.

Community i’s zoning regulation is Zi ∈ {0, 1}.

The state variables are now O and the zoning regu-
lations Z = (Z1, Z2) chosen by residents in the prior
period.

An equilibrium now includes a description of the zoning
rules Z′(O,Z).



When voting, residents anticipate how zoning changes
housing prices, tax prices, and service levels in the next
period and beyond.

A household owning a type H house in community i
who expects to continue owning the same type of house
next period will favor zoning if

(1− µ− d)[P 1
Hi − P 0

Hi]
+µ
[
(B(g1

i )− ρ1
Hig

1
i )− (B(g0

i )− ρ0
Hig

0
i )
]

+δµ∆V > 0

where P 1
Hi is price with zoning and P 0

Hi is price without,
etc....and ∆V denotes the difference in continuation
utility.

Note that since d < 1− µ, households benefit from an
increase in the value of their homes.



Given an equilibrium, (O∗,Z∗) is a steady state if new
construction is such as to maintain the stock of old
houses at O∗ and if citizens maintain the zoning rules
Z∗.

Steady state (O∗,Z∗) is efficient if either Z∗ equals
(1, 0) and O∗ equals (1− d)(1−F (θe), 0, 0, F (θe)), or
the reverse.

In an equilibrium with endogenous zoning, do old hous-
ing stocks and zoning rules converge to an efficient
steady state?

Coate shows that there exists no equilibrium with en-
dogenous zoning which has a steady state that is both
efficient and satisfies a local stability property.



Sketch of proof: At an efficient steady state, one com-
munity has no zoning and consists of all small houses,
the other has zoning and consists of all large houses.

If the small house community deviated by imposing zon-
ing, the price of small houses would rise.

Public service surplus in the deviating community could
only increase because prior to the deviation all houses
are small.

Thus, the short run impact of the deviation is positive,
if households benefit from higher prices for their houses.

This is the case if d < 1− µ.

The stability property rules out harmful long run effects
of the deviation. �



What does happen when zoning decisions are endoge-
nous?

Coate provides examples in which equilibrium involves
both communities always imposing zoning.

In these equilibria, the steady state is that all houses
are large.

In steady state, property taxes are benefit taxes because
all houses have the same price, but the housing choice
is distorted upwards.

Thus the distortion is the opposite of that arising with
property taxes and no zoning.



3) Distributional Implications of Local
Service Provision

While local government provision of services may allow
for efficient sorting, it may also have negative distribu-
tional consequences.

This is particularly the case for local provision of K-12
education.

The concern is that local communities will stratify ac-
cording to income, and higher income communities will
provide better quality schooling for their children.

This inequity in education will result in growing social
inequality.

Over the last 25 years, a series of state supreme court
rulings and concern over public education, have led
many states to enact reforms with the aim of reduc-
ing inequities in public education.



This process began with the Serrano ruling in Califor-
nia in 1971 and by 1998 had overturned the school-
financing systems in 16 states.

The effect of this litigation, both actual and threat, has
been to increase the role of the state and decrease that
of local provision.

There has therefore been a move from local to central-
ized financing.

A number of researchers have analyzed the impact of
such reforms theoretically.

Most of these analyses have been in the context of
static Tiebout models.

Fernandez and Rogerson (1998) AER present a nice
analysis which traces out the dynamic implications of
such reforms for the steady state income distribution
and welfare.

The paper combines a static Tiebout model with an
overlapping-generations structure.



Fernandez and Rogerson’s model

Infinite horizon, with time periods denoted by t = 1, ....,∞

2-period OLG

A continuum of individuals of measure 1 is born in each
time period

Each individual belongs to a household consisting of
one parent and one child

All decisions are made by parents each of whom has
identical preferences given by

u(c, h) + Ew(yc)

where c is consumption of a numeraire private good, h
is consumption of housing services, and yc is the child’s
income when it becomes a parent.



u(c, h) is strictly concave, increasing in both arguments
and defines preferences over c and h that are homoth-
etic

w(yc) is strictly concave and increasing

Parents’ incomes belong to the discrete set {y1, ...., yI}
where y1 < .... < yI .

A parent’s income is determined by the quality of the
education that it had as a child

The probability that a parent has income yi if it had an
education of quality q is φi(q)

Let
v(q) =

∑
i

φi(q)w(yi)

Then, preferences can be defined over c, h, and q:

u(c, h) + v(q)



Assume that v(q) is increasing and strictly concave.

Parents must choose a community in which to live -
there are two such communities indexed by j = 1, 2
and referred to as C1 and C2.

In the basic model, each community provides educa-
tion, financing it by a tax on housing spending (i.e., a
property tax).

Each community is characterized by a proportional tax
on housing spending tj , a quality of education qj and
a net-of-tax housing price pj .

Let πj = (1 + tj)pj denote the gross-of-tax price of
housing

The tax revenues finance education and qj just equals
per-pupil tax revenue

There are no private schools



The supply of housing in community j is Hs
j (pj).

Parents rent housing for themselves and their child -
the owners of housing are outside the model.

In each period, the following happens:

(i) Parents choose where they are going to live (at this
time they know their incomes)

(ii) Residents in each community choose a tax rate (ma-
jority voting)

(iii) Parents make their housing choices, pay their taxes,
send their child to school, and consume.



Solving the model

(i) Within a period

For any given period and income distribution, we can
solve for what happens.

This part of the model is basically a static Tiebout
model in which public services are financed by property
taxation and households differ in their incomes.

There are a large class of models of this type - see
Epple, Filimon, and Romer (1993) for a discussion of
the theoretical issues.

From a parent’s perspective, a community is completely
characterized by the pair (π, q); i.e., the gross-of-tax
price of housing and the schooling quality.

Households take these as given when choosing their
community.



A parent with income y facing the pair (π, q) has an
indirect utility function

V (π, q; y) = maxu(c, h) + v(q)
πh+ c ≤ y

Given the pair of options {(π1, q1), (π2, q2)} each par-
ent will choose the community which provides the great-
est utility.

Let h(π, y) be the parent’s housing demand function.

By homotheticity, this can be written as:

h(π, y) = g(π)y

where g(π) is a decreasing function

Given a set of residents of mass Nj and a tax rate tj
in Cj , the quality of schooling qj and the pre-tax price
of housing pj must satisfy

Njg(πj)µj = Hs
j (pj)



and
tjpjg(πj)µj = qj

where µj is mean income in Cj .

We can solve the first equation for pj for any given
choice of tj

The second equation then gives the associated level of
qj .

In this way, we can write school quality and post-tax
housing prices as functions qj = q(tj , µj , Nj) and πj =
π(tj , µj , Nj)

To progress further, some more structure needs to be
imposed on preferences:

Assumption: For all (q, π),

v′(q)

uc(y − πh(π, y), h(π, y))h(π, y)

is increasing in y.



Note that

V (π, q; y) = u(y − πh(π, y), h(π, y)) + v(q)

Thus,
∂V (π, q; y)

∂q
= v′(q)

and, by the Envelope Theorem

∂V (π, q; y)

∂π
= uc(y − πh(π, y), h(π, y))h(π, y)

Thus,

v′(q)

uc(y − πh(π, y), h(π, y))h(π, y)

= −∂V (π, q; y)/∂q

∂V (π, q; y)/∂p

= MRS between q & π



This assumption therefore says that higher income in-
dividuals have steeper indifference curves in the (q, π)
plane.

This type of assumption is necessary to ensure existence
of an equilibrium in this type of model - see Epple,
Filimon, and Romer (1993).

It is often referred to as the single-crossing property.

Under this assumption, we obtain the result that the
two communities must be stratified.

To be more precise, if {(π∗1, q∗1), (π∗2, q
∗
2)} is an equilib-

rium then (π∗1, q
∗
1) > (π∗2, q

∗
2) and all parents in commu-

nity C1 have higher income than those in community
C2.

Thus, community 1 has higher quality schools, higher
gross-of-tax housing prices, and a higher income popu-
lation.



Lower income households are deterred from moving to
community 2, despite its better quality education, be-
cause the housing is more expensive.

Again, such stratification is a standard prediction in
these models when single-crossing is assumed.

The equilibrium tax rates in the two communities will be
those preferred by the parent with the median income.

The preferred tax rate of a parent with income y in
community Cj solves the problem

maxtV (π(t, µj , Nj), q(t, µj , Nj); y)

The first order condition for the problem implies that

uc(·)h(·)πt(·) = v′(·)qt(·)

The right hand side is the marginal benefit of taxation
and the left hand side is the marginal cost



It is not possible to say in general whether t1 will be
greater or less than t2.

While community 1 has higher quality education, it has
a bigger tax base because households spend more on
housing.



(ii) Across periods

The state variable of the model is the income distri-
bution of the parents λ = (λ1, ...., λI) where λi is the
fraction of parents with income yi.

Let Λ(λ) denote the set of income distributions that
could be generated by the within-period equilibrium if
the income distribution of the parents were given by λ.

Thus, if the income distribution of the parents in period
t is λt, then the income distribution in period t + 1 is
an element of the set Λ(λt)

An income distribution λ∗ is a steady state if λ∗ ∈
Λ(λ∗).



The policy experiment

We are interested in the implications of a switch from
a local community based system of educational finance
to a centralized system.

The model we have described is of a local system.

To model a centralized system, Fernandez and Roger-
son suppose that the state government levies a property
tax t that applies to both communities and provides a
uniform quality of schooling across the communities.

The tax rate is chosen by the parents in both commu-
nities (again by majority voting).

Lets think intuitively about the implications of this change.



If school quality and taxes are equalized across districts,
then housing prices must be equal across communities

The quality of schooling will be determined by the tax
rate the voter with the median income prefers

But the median income depends upon the income dis-
tribution and hence is endogenous.

Thus, it may take a while for a steady state to be
reached

The nice thing about this model is that allows the long
run implications of this change to be worked out.

Nonetheless, it is not possible to say much analytically,
so they calibrate and simulate, computing the steady
state income distributions under the two systems



Results

Moving to centralized financing increases both
average income and education spending as a fraction
of total consumption.

See Tables 1,2,3 & 4 of the paper for the details.

To get a welfare measure, they compute the expected
utility of a parent whose income is a random draw
from the steady state income distribution.

This is the same thing as assuming a utilitarian social
welfare function.

Welfare is higher under centralized financing.

For a money measure of the welfare gain they compute
the percent by which the vector of income {y1, ...., yI}



would have to be reduced each period in the centralized
financing system to make aggregate utility the same as
it was under local financing.

The amount is 3.2%.

They argue that this means that the gains from cen-
tralized financing are significant.



4) Capitalization

Tiebout’s idea that people vote with their feet suggests
that the benefits of local government amenities and
the costs of a community’s tax obligations should be
capitalized into housing prices.

There is a huge literature, mostly empirical, exploring
variants of this idea.

This literature follows the seminal work of Oates enti-
tled “The Effects of Property Taxes and Local Public
Spending on Property Values: An Empirical Study of
Tax Capitalization and the Tiebout Hypothesis” which
was published in the 1969 JPE.

Oates provided evidence that property tax rates and
school spending levels were capitalized into house prices
in New Jersey municipalities.



On the theory side, most treatments of the idea are
static and use simple supply and demand models.

This has the disadvantage of obscuring exactly what
should be capitalized.

In this lecture, I present a simple dynamic model of
capitalization.



The model

Consider a community such as a municipality or a school
district.

The time horizon is infinite, with periods indexed by t.

There is a set of potential residents of the community
of size 1.

Potential residents are characterized by the strength of
their desire to live in the community which is measured
by the preference parameter θ that takes on values be-
tween 0 and θ.

The fraction of potential residents with preference pa-
rameter below θ ∈ [0, θ] is θ/θ.

There is turnover, so that in each period new house-
holds join the group of potential residents and old ones
leave.



The probability that a household currently a potential
resident will be one in the subsequent period is µ.

Thus, in each period, a fraction 1 − µ of households
leave the pool of potential residents and are replaced
by an equal number of new ones.

The only way to live in the community is to own a
house.

There are a fixed number of houses sufficient to acco-
modate a population of size H where H is less than
the size of the pool of potential residents (i.e., 1).

These houses are infinitely durable.

The government of the community provides a durable
public good which depreciates at rate δ ∈ (0, 1).

In a period in which the community’s level of the public
good is g, the government invests in I(g) ≥ 0 units.



The investment function I(g) is assumed to be exoge-
nous.

Investment costs c per unit and is financed by a tax on
the residents.

The investment takes time to build and is not available
for use until the next period.

The community does not pay for the investment until it
is complete and hence taxes to finance the investment
are also not levied until the next period.

Each household in the pool of potential residents re-
ceives an exogenous income per period sufficient to pay
taxes and purchase housing in the community.

When living in the community, households have pref-
erences defined over the public good and private con-
sumption.



A household with preference parameter θ with private
consumption x obtains a period payoff of θ+x+B(g)
if it lives in the area when the level of the public good
is g.

The public good benefit function B(g) is increasing,
smooth, strictly concave, and satisfies B(0) = 0.

When not living in the community, a household’s per
period payoff is just given by u.

Households discount future payoffs at rate β and can
borrow and save at rate ρ = 1/β − 1.

There is a competitive housing market which opens at
the beginning of each period.

Demand comes from new households moving into the
community and supply comes from owners leaving the
community.



The price of houses is denoted P .

The timing of the model is as follows.

Each period, the community starts with a public good
level g and a tax obligation T (which may be zero).

The public good level is the sum of the depreciated level
from the prior period and any investment approved in
the prior period.

The tax obligation is to finance any investment under-
taken in the prior period.

At the beginning of the period, those in the pool of
potential residents learn whether they will be remaining
in the pool and new households join.

Households in the pool must then decide whether to
live in the area.



The housing market opens and the equilibrium housing
price P (g, T ) is determined.

The government levies taxes on residents sufficient to
meet its tax obligation and residents obtain their payoffs
from living in the area.

These depend not only on their preference θ but also
on the public good level and taxes.

The government undertakes investment I(g).

The community’s public good level and tax obligation
in the next period (g′, T ′) is ((1− δ)g + I(g), cI(g)).



Housing market equilibrium and
capitalization

We now explain how the housing market equilibriates
given the investment path I(g).

First consider the decisions of households.

At the beginning of any period, households fall into
two groups: those who resided in the community in the
previous period and those who did not, but could in the
current period.

Households in the first group own homes, while those
in the second group do not.

Households in the first group who leave the set of po-
tential residents will sell their houses and obtain a con-
tinuation payoff of

P (g, T ) +
u

1− β
.



The remaining households in the first group and all
those in the second must make a location decision l ∈
{0, 1}, where l = 1 means that they live in the com-
munity.

This decision will depend on their preference parameter
θ and on the level of public goods and taxes.

Since selling a house and moving is costless, there is no
loss of generality in assuming that all households sell
their property at the beginning of any period.

This makes each household’s location decision indepen-
dent of its property ownership state.

It also means that the only future consequences of the
current location choice is through the selling price of
housing in the next period.

To make this more precise, let Vθ(g, T ) denote the ex-
pected payoff of a household with preference parameter
θ at the beginning of a period in which it belongs to
the set of potential residents but does not own a house.



Then, we have that

Vθ(g, T ) =

max
l∈{0,1}

{
l (θ +B(g)− T/H − P (g, T ) + βP (g′, T ′))

+(1− l)u+ β[µVθ(g
′, T ′) + (1− µ) u

1−β ]

}
.

Inspecting this problem, it is clear that a household of
type θ will choose to reside in the community if and
only if

θ +B(g)− T/H − P (g, T ) + βP (g′, T ′) ≥ u. (3)

We can now describe the equilibrium.

Given an initial state (g, T ), the price of housing P (g, T )
adjusts to equate demand and supply.

The demand for housing is the fraction of households
for whom (3) holds.



Given the uniform distribution of preferences, this frac-
tion is

1− u− (B(g)− T/H − P + β(g′, T ′))

θ
.

The supply of housing is, by assumption, perfectly in-
elastic at H.

The equilibrium price of housing therefore satisfies

1− u− (B(g)− T/H − P (g, T ) + βP (g′, T ′))

θ
= H.

To characterize the housing market equilibrium, define
the present value of public goods surplus S(g, T ) re-
cursively as follows:

S(g, T ) = B(g)− T/H + βS(g′, T ′).

Intuitively, S(g, T ) represents the discounted value of
future public good surplus for a household who will
be living in the community permanently starting in a
period in which the community has public good level g
and tax obligation T .



Capitalization Theorem There exists a constant K
such that the equilibrium housing price is given by

P (g, T ) = K + S(g, T ).

The Theorem tells us that the equilibrium price can be
expressed as the sum of a constant and the discounted
value of future public good surplus.

The theorem therefore implies that the value of future
public good levels and tax obligations is fully capitalized
into the price of housing.

The constant K is tied down by the requirement that
the marginal household with preference (1−H) θ is
just indifferent between living and not living in the com-
munity.



Discussion

Note that what is capitalized is the entire stream of
future public good benefits and tax obligations.

Denoting period 0 as the current period and future pe-
riods by t = 1, ....,∞, we have that

S(g, T ) =
∞∑
t=0

βt(B(gt)− Tt/H)

where 〈gt, Tt〉∞t=0 is the sequence of policies defined in-
ductively by the equations

(g0, T0) = (g, T )

and for all t ≥ 1

(gt, Tt) = ((1− δ)gt−1 + I(gt−1), cI(gt−1)) .

Comparing across different communities, the theorem
suggests that we can look to housing prices to see how
households value the streams of future public good ben-
efits and tax obligations that their local governments
generate.



Consistent with its static focus, the empirical literature
often assumes that housing prices reflect residents’ val-
uations of current public good levels and taxes.

This is legitimate only if we assume that the community
is in a steady state in which I(g) = cδg = T .

In this case,

S(g, T ) =
B(g)− T/H

1− β
.

It is also important to note that the full capitalization
result follows from the assumption that the supply of
houses is fixed.



Proof of Capitalization Theorem

Consider a period in which the community’s level of
public good is g and its tax obligation is T .

The supply of housing is H. Potential residents just
differ in their preference for living in the community θ.

Clearly, those with higher θ will have a greater
willingness to pay to live in the community.

Thus, the fraction H of potential residents with the
highest preference parameters will live in the
community.

The marginal resident will therefore have preference
parameter θ (1−H) since

θ − θ (1−H)

θ
= H.



This will be the case in each and every period irrespec-
tive of the community’s level of public good and tax
obligation.

It follows that, in equilibrium, all types θ ∈ [0, θ (1−H))
never reside in the community which implies that

Vθ(g, T ) =
u

1− β
.

Types θ ∈ [θ (1−H)), θ], on the other hand, will reside
in the community as long as they remain in the pool of
potential residents.

For these types, therefore, irrespective of g and T

Vθ(g, T ) =
θ +B(g)− T/H − P (g, T ) + βP (g′, T ′)

+β[µVθ(g
′, T ′) + (1− µ) u

1−β ]
.

We now develop an expression for the value functions
of these resident households.



Let θ ∈ [θ (1−H)), θ].

Let 0 index the current period and let future periods be
indexed by t = 1, ....,∞.

Let 〈gt, Tt〉∞t=1 be the sequence of policies defined in-
ductively by the equations

(g1, T1) = ((1− δ)g + I(g), cI(g))

and for all t ≥ 2

(gt, Tt) = ((1− δ)gt−1 + I(gt−1), cI(gt−1)) .

We know that

Vθ(g, T ) =
θ + β(1− µ) u

1−β +B(g)− T/H − P (g, T )

+β [P (g1, T1) + µVθ(g1, T1)]
.

(4)

But, since the household will reside in the community
in period 1 if it remains in the pool, we also know that



β [P (g1, T1) + µVθ(g1, T1)]

=

β(1− µ)P (g1, T1)

+βµ

[
θ + β(1− µ) u

1−β +B(g1)− T1/H

+β {P (g2, T2) + µVθ(g2, T2)}

]
.

Moreover, period 1’s housing price P (g1, T1) satisfies
the equilibrium condition

1−u− (B(g1)− T1/H − P (g1, T1) + βP (g2, T2))

θ
= H,

which implies that

P (g1, T1) = θ(1−H)−u+B(g1)−T1/H+βP (g2, T2).

Substituting this into the above expression, we can
write

β [P (g1, T1) + µVθ(g1, T1)]

= κ1(θ) + β [B(g1)− T1/H]

+β2
[
P (g2, T2) + µ2Vθ(g2, T2)

]
where

κ1(θ) = β

{
(1− µ)

[
θ(1−H)− u

]
+µ
[
θ + β(1− µ) u

1−β

] } .



Again, since the household will reside in the community
in period 1 if it remains in the pool, we also know that

β2
[
P (g2, T2) + µ2Vθ(g2, T2)

]
=

β2(1− µ2)P (g2, T2)

+β2µ2

[
θ + β(1− µ) u

1−β +B(g2)− T2/H

+β {P (g3, T3) + µVθ(g3, T3)}

]
.

Equilibrium in the housing market implies that

P (g2, T2) = θ(1−H)−u+B(g2)−T2/H+βP (g3, T3).

Substituting this in, we can write

β2
[
P (g2, T2) + µ2Vθ(g2, T2)

]
= κ2(θ) + β2 [B(g2)− T2/H]

+β3
[
P (g3, T3) + µ3Vθ(g3, T3)

]
where

κ2(θ) = β2

{
(1− µ2)

[
θ(1−H)− u

]
+µ2

[
θ + β(1− µ) u

1−β

] } .



By similar logic, for all periods t ≥ 3, we have that

βt
[
P (gt, Tt) + µtVθ(gt, Tt)

]
= κt(θ) + βt [B(gt)− Tt/H]

+βt+1
[
P (gt+1, Tt+1) + µt+1Vθ(gt+1, Tt+1)

]
where

κt(θ) = βt

{
(1− µt)

[
θ(1−H)− u

]
+µt

[
θ + β(1− µ) u

1−β

] } .
Successively substituting these expressions into (4), re-
veals that

Vθ(g, T ) =θ + β(1− µ)
u

1− β
+B(g)− T/H − P (g, T )

+
∞∑
t=1

{
κt(θ) + βt (B(gt)− Tt/H)

}
=
∞∑
t=0

κt(θ) + S(g, T )− P (g, T ).

Now, it must be the case that in equilibrium the marginal
household, which is the household with preference θ(1−
H), is just indifferent between residing in the commu-
nity or not.



Thus, it must be the case that

∞∑
t=0

κt(θ(1−H)) + S(g, T )− P (g, T ) =
u

1− β
.

This implies that

P (g, T ) =
∞∑
t=0

κt(θ(1−H))− u

1− β
+ S(g, T ).

Defining

K =
∞∑
t=0

κt(θ(1−H))− u

1− β
,

yields the result. �



Capitalization and optimal investment

Now suppose that investment in the public good were
chosen each period to maximize the expected payoffs
of those households residing in the community.

One might worry that, given that they may have to
leave the community (with probability 1− µ), the resi-
dents would be short-sighted and underinvest.

However, since they will be rewarded for investing by
getting a higher price for their houses when they leave,
capitalization actually provides them with optimal in-
centives.

To see this consider a period in which the current level
of the public good is g.

If the residents invest I units, then a resident of type
θ ∈ [θ (1−H)), θ] will obtain an expected continuation
payoff

P ((1−δ)g+I, cI)+µVθ((1−δ)g+I, cI)+(1−µ)
u

1− β



In the proof of the Capitalization Theorem, we showed
that for households who would reside in the community
(i.e., households for whom θ ∈ [θ(1−H)), θ]), we have
that for some constant κ(θ)

Vθ(g, T ) = κ(θ) + S(g, T )− P (g, T ).

Given that, by the Theorem, there exists some constant
K such that the equilibrium price of housing is such
that

P (g, T ) = K + S(g, T ),

it follows that

Vθ(g, T ) = κ(θ)−K.



Thus, we can write the expected continuation payoff of
a resident of type θ ∈ [θ(1−H)), θ]

P ((1− δ)g + I, cI) + µVθ((1− δ)g + I, cI)

+ (1− µ)
u

1− β
=K + S((1− δ)g + I, cI) + µ[κ(θ)−K]

+ (1− µ)
u

1− β

The residents will therefore choose an investment level
to solve public good surplus; i.e.,

max
I≥0

S((1− δ)g + I, cI).


